Skip to main content
Log in

Optimised design of jet-grouted rafts subjected to nonuniform vertical loading

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

A parametric study based on three dimensional finite element (3D FE) simulations of jet-grouted rafts (JGRs) subjected to nonuniform vertical loading has been conducted to investigate the interactions of JGR elements that are raft, jet-grouted columns (JGCs), granular interlayer mat and subsoil. The presented initial 3D FE simulation of a single JGC which is geometrically approximated with the rotated sinusoidal functional representation accounting for the actual variation of JGC diameter with depth is validated performing the back-analysis of the developed 3D FE models with the well-known experimental results reported in the literature. The image processing technique allowing the 3D FE modelling of complex irregular geometries has been employed and the extension of simulation to the complete JGR system is accomplished. Considering the design strategies previously defined for JGR systems, Paper resolves how the independent variables of interlayer thickness, JGC spacing and length under the core and edge areas of raft affect the design responses of settlements, bending moments and vertical stresses. The multi objective optimization analysis has been performed using Response Surface Method (RSM) to achieve the most economical design solution that satisfies the presented design constraints for JGRs. The effects of design constraints on the optimised design are presented graphically. Paper concludes the coupling of design strategies defined separately for JGC and piled raft provides opportunity to achieve the optimised design of complete JGR systems using 3D FE simulation with the image processing technique and RSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abaqus (2012). Abaqus, version 6.12, Dassault Systèmes, USA.

    Google Scholar 

  • AGI (2012). Jet Grouting Guidelines, Associazione Geotecnica Italiana, Italy.

    Google Scholar 

  • Algin, H. M. (2016). “Optimised design of jet-grouted raft using response surface method.” Comput Geotech, Vol. 74, No. 4, pp. 56–73, DOI: 10.1016/j.compgeo.2015.12.012.

    Article  Google Scholar 

  • Arroyo, M., Gens, A., Alonso, E., Modoni, G., and Croce, P. (2007). Informes sobre tratamientos de jet-grouting, ADIF LAV Madrid-Barcelona-Francia, Tramo Torrasa-Sants, Rep. of the Univ. Politècnicha de Catalunya, Catalunya, Spain.

  • Bell, A. L. (1993). Jet grouting, Ground Improvement, M. P. Moseley, ed., Blackie, Boca Raton, Florida, 149–174.

  • Botto, G. (1985). “Developments in the techniques of jet grouting.” Proc., 12th Ciclo di Conferenze di Geotecnica, Trevi, Vol. 1, pp. 81–90.

    Google Scholar 

  • BS-EN-1994-1 (2004). Eurocode 7-Geotechnical design, European Committee for Standardization, Brussels, Belgium.

    Google Scholar 

  • BS-EN-12716 (2001). Execution of special geotechnical works: Jet grouting, European Committee for Standardization, Brussels, Belgium, 38p.

    Google Scholar 

  • Bustamante, M. (2002). Les colonnes de jet grouting, Report of the Seminar: Pathologies des Sols et des Foundations, France.

    Google Scholar 

  • Bzówka, J. (2009). Wspólpraca kolumn wykonywanych technika, iniekcji strumieniowej z podlo_zem gruntowym (Interaction of jet grouting columns with subsoil), Silesian University of Technology, Gliwice, Poland.

    Google Scholar 

  • Bzówka, J. and Pieczyrak, J. (2008). “Pull out and load tests for jet grouting columns.” Proc., Proc., XI Baltic Sea Geotechnical Conf., Polish Committee on Geotechnics and Gdansk Univ. of Technology, Vol. 1, pp. 929–933.

    Google Scholar 

  • Chu, E. H. (2005). Turbulent Fluid Jet Excavation in Cohesive Soil, With Particular Application to Jet Grouting, PhD, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Cicognani, M. and Garassino, A. L. (1989). “Controlli nell’esecuzione dei trattamenti con jet grouting.” Proc., Proceedings of the 17th National Geotechnical Conference 1, Associazione Geotecnica Italian, Vol. 1, pp. 97–105.

    Google Scholar 

  • Croce, P. and Flora, A. (1998). “Effects of jet grouting in pyroclastic soils.” Rivista Italiana di Geotecnica Vol. 29, No. 2, pp. 5–14.

    Google Scholar 

  • Croce, P., Flora, A., and Modoni, G. (2001). “Experimental investigation of jet grouting.” Proc., Proceedins International Symposium 2001 A Geo-Odyssey, Virginia Technical University, Vol. 1, pp. 245–259.

    Google Scholar 

  • Croce, P., Flora, A., and Modoni, G. (2014). Jet Grouting: Technology, Design and Control, Taylor & Francis, Boca Raton, Florida.

  • Croce, P., Gajo, A., Mongiovì, L., and Zaninetti, A. (1994). “Una verifica sperimentale degli effetti della gettiniezione.” Riv. Ital. Geotec., Vol. 28, No. 2, pp. 91–101.

    Google Scholar 

  • Croce, P. and Modoni, G. (2002). “Numerical modelling of jet-grouted foundations.” Proc., Proc., 5th European Conf. on Numerical Methods Geotechnical Engineering, European Regional Technical Committee (ERTC7), Vol. 1, pp. 453–458.

    Google Scholar 

  • Davis, E. H. and Taylor, H. (1962). “The movement of bridge approaches and abutments on soft foundation soils.” Civil Engineering Laboratories, University of Sydney, Sydney, Australia.

    Google Scholar 

  • DIN-4093 (2012). Design of ground improvement: Jet grouting, deep mixing, or grouting, Standard of the Deutsches Institut für Normung, Dusseldorf, Germany, 17p.

    Google Scholar 

  • Falcao, J., Pinto, A., and Pinto, F. (2001). “Case histories and work performance of vertical jet grouting solutions.” Proc., Proceedings of the 4th International Conference on Ground Improvement, Finnish Geotechnical Society, Vol. 1, pp. 165–171.

    Google Scholar 

  • Flora, A. and Lirer, S. (2011). “Interventi di consolidamento dei terreni, tecnologie e scelte di progetto.” Proc., Proceedings of the 24th National Conference of Geotechnical Engineering Innovazione tecnologica nell’Ingegneria Geotecnica’, Vol. 1, pp. 87–148.

    Google Scholar 

  • Flora, A., Modoni, G., Lirer, S., and Croce, P. (2013). “The diameter of single, double and triple fluid jet grouting columns: Prediction method and field trial results.” Geotechnique, Vol. 63, No. 11, pp. 934–945, DOI: 10.1680/geot.12.P.062.

    Article  Google Scholar 

  • Garassino, A. L. (1997). Design Procedures for Jet Grouting, Seminar organised by THL Foundation Equipment Pte., Ltd., Singapore.

    Google Scholar 

  • GI-ASCE (2009). Jet Grouting Guideline, Geo Institute of ASCEGrouting Committee-Jet Grouting Task Force, USA.

    Google Scholar 

  • Güneyisi, E., Gesoglu, M., Algin, Z., and Mermerdas, K. (2014). “Optimization of concrete mixture with hybrid blends of metakaolin and fly ash using response surface method.” Composites Part B: Engineering, Vol. 60, No. 5, pp. 707–715, DOI: 10.1016/j.compositesb.2014.01.017.

    Article  Google Scholar 

  • Heng, J. (2008). Physical modelling of jet grouting process, PhD, University of Cambridge, Cambridge, UK.

    Google Scholar 

  • Horikoshi, K. and Randolph, M. F. (1998). “A contribution to optimum design of piled rafts.” Geotechnique,Vol. 48, No. 3, pp. 301–317, DOI: 10.1680/geot.1998.48.3.301.

    Article  Google Scholar 

  • Jaky, J. (1944). “The coefficient of earth pressure at rest.” Journal of the Society of Hungarian Architects and Engineers, Vol. 78, No. 22, pp. 355–358.

    Google Scholar 

  • JJGA (2005). Jet Grouting Technology: JSG Method, Column Jet Grouting Method, Technical Information of the Japanese Jet Grouting Association, Japan, 80p.

    Google Scholar 

  • Kutzner, C. (1996). Grouting of rock and soil, A.A. Balkema, Rotterdam, Netherlands.

    Google Scholar 

  • Lesnik, M. (2001). “Methods to determine the dimension of jet-grouted bodies.” Proc., Proceedings of the 14th Young Geotechnical Engineers Conference, Vol. 1, pp. 363–371.

    Google Scholar 

  • Leung, Y. F., Klar, A., and Soga, K. (2010). “Theoretical study on pile length optimization of pile groups and piled rafts.” J Geotech Geoenviron, Vol. 136, No. 2, pp. 319–330, DOI: 10.1061/(Asce) Gt.1943-5606.0000206.

    Article  Google Scholar 

  • Liang, F. Y., Chen, L. Z., and Shi, X. G. (2003). “Numerical analysis of composite piled raft with cushion subjected to vertical load.” Comput Geotech,Vol. 30, No. 6, pp. 443–453, DOI: 10.1016/S0266-352x(03)00057-0.

    Article  Google Scholar 

  • Maertens, J. and Maekelberg, W. (2001). “Special applications of the jet grouting technique for underpinning works.” Proc., Proceedings of the 15th ICSMFE, Vol. 1, pp. 1795–1798.

    Google Scholar 

  • Miki, G. and Nakanishi, W. (1984). “Technical progress of the jet grouting method and its newest type.” Proc., Proceedings of the International Conference on In Situ Soil and Rock Reinforcement, Vol. 1, pp. 195–200.

    Google Scholar 

  • Modoni, G. and Bzowka, J. (2012). “Analysis of foundations reinforced with jet grouting.” J. Geotech Geoenviron, Vol. 138, No. 12, pp. 1442–1454, DOI: 10.1061/(Asce)Gt.1943-5606.0000718.

    Article  Google Scholar 

  • Modoni, G., Croce, P., and Mongiovi, L. (2006). “Theoretical modelling of jet grouting.” Geotechnique,Vol. 56, No. 5, pp. 335–347, DOI: 10.1680/geot.2006.56.5.335.

    Article  Google Scholar 

  • Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. M. (2009). Response surface methodology: Process and product optimization using designed experiments, Wiley.

    MATH  Google Scholar 

  • Nakanishi, K. and Takewaki, I. (2013). “Optimum pile arrangement in piled raft foundation by using simplified settlement analysis and adaptive step-length algorithm.” Geomech Eng,Vol. 5, No. 6, pp. 519–540, DOI: 10.12989/gae.2013.5.6.519.

    Article  Google Scholar 

  • Pradeep, G. (2008). Response surface method, VDM Verlag Publishing, Saarbrücken, Germany.

    Google Scholar 

  • Reul, O. and Randolph, M. F. (2004). “Design strategies for piled rafts subjected to nonuniform vertical loading.” J Geotech Geoenviron, Vol. 130, No. 1, pp. 1–13, DOI: 10.1061/(Asce)1090-0241(2004) 130:1(1).

    Article  Google Scholar 

  • Schanz, T. (1998). Zur modellierung des mechanischen verhaltens von reibungmaterialen, PhD, Universität Stuttgart, Stuttgart, Germany.

    Google Scholar 

  • Shahu, J. T. (2006). “Non-uniform granular pile–mat foundations: Analysis and model tests.” Geotech Geol Eng,Vol. 24, No. 4, pp. 1065–1087, DOI: 10.1007/s10706-005-6316-z.

    Article  Google Scholar 

  • Tornaghi, R. and Pettinaroli, A. (2004). “Design and control criteria of jet grouting treatments.” Proc., Proceedings of the International Symposium on Ground Improvement, Ecole Nationale des Ponts et Chaussees, Vol. 1, pp. 295–319.

    Google Scholar 

  • Wang, Z.-F., Shen, S.-L., and Yang, J. (2012). “Estimation of the diameter of jet-grouted column based on turbulent kinematic flow theory.” Proc., Proceedings of the Conference on Grouting and Deep Mixing 2, ASCE Geotechnical Special Publication, Vol. 1, pp. 2044–2051.

    Article  Google Scholar 

  • Whitcomb, P. J. and Anderson, M. J. (2004). RSM simplified: Optimizing processes using response surface methods for design of experiments, Taylor & Francis, New York.

    Google Scholar 

  • Wright, S. J. and Reese, L. C. (1977). “Drilled shaft design and construction guidelines manual: Construction of drilled shafts and design for axial loading.” U.S. Department of Transportation, Washington, DC,USA.

    Google Scholar 

  • Xanthakos, P. P., Abramson, L. W., and Bruce, D. A. (1994). Ground control and improvement, John Wiley & Sons, New York.

    Google Scholar 

  • Yahiro, T. and Yoshida, H. (1973). “Induction grouting method utilizing high speed water jet.” Proc., Proc., VIII Int. Conf. Soil Mechanics and Foundation Engineering, USSR National Society, Vol. 1, pp. 402–404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil Murat Algin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algin, H.M. Optimised design of jet-grouted rafts subjected to nonuniform vertical loading. KSCE J Civ Eng 22, 494–508 (2018). https://doi.org/10.1007/s12205-017-0841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0841-1

Keywords

Navigation