Skip to main content
Log in

Application of Type-2 Interval Fuzzy Sets to Contractor Qualification Process

  • Construction Management
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The selection of a general contractor for construction works is one of the most important decisions made throughout the entire construction project. It may be decisive in the success or failure of the project (e.g. delays in the commissioning of works, exceeding the budget, low quality of works). The article presents a method for supporting group decision-making in the contractor qualification process. The proposed method is a development of Mikhailov’s approach to Fuzzy Analytic Hierarchy Process. It consists in the aggregation of the decision makers’ judgments using type-2 fuzzy sets, allowing for inaccuracy of the decision-maker’s assessment. The use of an unbiased estimator of standard deviation for determining compromise evaluation enables the small size of the expert group and deviations in their evaluations to be taken into consideration. The quality of the solution obtained through this method was compared with the results obtained by means of Mikhailov’s Fuzzy Preference Programming and Enea & Piazza Method. The use of the proposed method generated better results for this example of preparing a ranking of contractors than the two other methods discussed. The method presented herein may also be proposed for solving decision-making problems in other spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso, J. M. and Lamata, M. T. (2006). “Consistency in the analytic hierarchy process: A new approach.” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 14, No. 4, pp. 445–459, DOI: 10.1142/S0218488506004114.

    Article  MATH  Google Scholar 

  • Altuzarra, A., Moreno-Jimenez, J. M., and Salvador, M. (2010). “Consensus building in AHP–group decision making: A bayesian approach.” Operations Research, Vol. 58, No. 6, pp. 1755–1773, DOI: 10.1287/opre.1100.0856.

    Article  MathSciNet  MATH  Google Scholar 

  • Asan, U., Soyer, A., and Bozdag, E. (2016). “An interval type-2 fuzzy prioritization approach to project risk assessment.” Journal of Multiple-Valued Logic & Soft Computing, Vol. 26, No. 6, pp. 541–577.

    MathSciNet  Google Scholar 

  • Ballesteros-Pérez, P., Skitmore, M., Pellicer, E., and González-Cruz, M. C. (2015). “Scoring rules and abnormally low bids criteria in construction tenders: A taxonomic review.” Construction Management and Economics, Vol. 33, No. 4, pp. 259–278, DOI: 10.1080/01446193.2015.1059951.

    Article  Google Scholar 

  • Basak, I. and Saaty, T. L. (1993). “Group decision making using the Analytic Hierarchy Process.” Mathematical and Computer Modelling, Vol. 17, Nos. 4–5, pp. 101–109, DOI: 10.1016/0895-7177(93)90179-3.

    Article  MATH  Google Scholar 

  • Beynon, M. J. (2005). “A method of aggregating in DS/AHP for group decision-making with non-equivalent importance of individuals in the group.” Computers & Operations Research, Vol. 32, No. 7, pp. 1881–1896, DOI: 10.1016/j.cor.2003.12.004.

    Article  MATH  Google Scholar 

  • Buckley, J. J. (1985). “Fuzzy hierarchical analysis.” Fuzzy Sets and Systems, Vol. 17, No. 3, pp. 233–247, DOI: 10.1016/0165-0114(85)90090-9.

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, Ch.-W., Wu, Ch.-R., and Lin, H.-H. (2009). “Applying fuzzy hierarchy multiple attribute to construct an expert decision making process.” Expert System with Applications, Vol. 36, No. 4, pp. 7363–7368, DOI: 10.1016/j.eswa.2008.09.026.

    Article  Google Scholar 

  • Chang, D.-Y. (1996). “Applications of the extent analysis method on fuzzy AHP.” European Journal of Operational Research, Vol. 95, No. 3, pp. 649–655, DOI: 10.1016/0377-2217(95)00300-2.

    Article  MATH  Google Scholar 

  • Chen, A.-M., and Lee, L.-W. (2010). “Fuzzy multiple attributes group decision-making based on the ranking values and the arithmetic operations on interval type-2 fuzzy sets.” Expert Systems with Applications, Vol. 37, No. 1, pp. 824–833, DOI: 10.1016/j.eswa.2009.06.094.

    Article  MathSciNet  Google Scholar 

  • Chen, S. J., Hwang, C. L., and Hwang, F. P. (1992). Fuzzy multiple attribute decision making: methods and applications, Springer-Verlag, Berlin, DOI: 10.1007/978-3-642-46768-4.

    Book  MATH  Google Scholar 

  • Cheng, E. W. L. and Li, H. (2004). “Contractor selection using the analytic network process.” Construction Management and Economics, Vol. 22, No. 10, pp. 1021–1032, DOI: 10.1080/0144619042000202852.

    Article  Google Scholar 

  • Chiao, K.-P. (2011). “Multiple criteria group decision making with triangular interval type-2 fuzzy sets.” IEEE International Conference on Fuzzy Systems, Taipei, pp. 2575–2582, DOI: 10.1109/FUZZY.2011.6007590.

    Google Scholar 

  • Cho, Y. G., and Cho, K. T. (2008). “A loss function approach to group preference aggregation in the AHP.” Computer & Operations Research, Vol. 35, No. 3, pp. 884–892, DOI: 10.1016/j.cor.2006.04.008.

    Article  MATH  Google Scholar 

  • Enea, M. and Piazza, T. (2004). “Project selection by constrained fuzzy AHP.” Fuzzy Optimization and Decision Making, Vol. 3, No. 1, pp. 39–62, DOI: 10.1023/B:FODM.0000013071.63614.3d.

    Article  MATH  Google Scholar 

  • Escobar, M. T., and Moreno-Jimenez, J. M. (2007). “Aggregation of individual preference structures in AHP-group decision making.” Group Decision and Negotiation, Vol. 16, No. 4, pp. 287–301, DOI: 10.1007/s10726-006-9050-x.

    Article  Google Scholar 

  • Groselj, P., Malovrh, S. P., and Stirn, L. Z. (2001). “Methods based on data envelopment analysis for deriving group priorities in analytic hierarchy process.” Central European Journal of Operations Research, Vol. 19, No. 3, pp. 267–284, DOI: 10.1007/s10100-011-0191-x.

    Article  MathSciNet  MATH  Google Scholar 

  • Groselj, P., Strin, L. Z., Ayrilmis, N., and Kuzman, M. K. (2015). “Comparison of some aggregation techniques using group analytic hierarchy process.” Expert Systems with Applications, Vol. 42, No. 4, pp. 2198–2204, DOI: 10.1016/j.eswa.2014.09.060.

    Article  Google Scholar 

  • Groselj, P. and Zadnik, S. (2012). “Acceptable consistency of aggregated comparison matrices in analytic hierarchy process.” European Journal of Operational Research, Vol. 223, No. 2, pp. 417–420, DOI: 10.1016/j.ejor.2012.06.016.

    Article  MathSciNet  MATH  Google Scholar 

  • Hatush, Z. and Skitmore, M. (1997). “Evaluating contractor prequalification data: Selection criteria and project success factors.” Construction Management and Economics, Vol. 15, No. 2, pp. 129–147, DOI: 10.1080/01446199700000002.

    Article  Google Scholar 

  • Hatush, Z. and Skitmore, M. (1998). “Contractor selection using multicriteria utility theory: An additive model.” Building and Environment, Vol. 33, Nos. 2–3, pp. 105–115, DOI: 10.1016/S0360-1323(97)00016-4.

    Article  Google Scholar 

  • Hwang, J. S. and Kim, Y. S. (2016). A Bid decision-making model in the initial bidding phase for overseas construction projects.” KSCE Journal of Civil Engineering, Vol. 20, No. 4, pp. 1189–1200, DOI: 10.1007/s12205-015-0760-y.

    Article  Google Scholar 

  • Ishizaka, A. and Labib, A. (2011). “Review of the main developments in the analytic hierarchy process.” Expert Systems with Applications, Vol. 38, No. 11, pp. 14336–14345, DOI: 10.1016/j.eswa.2011.04.143.

    Google Scholar 

  • Jaskowski, P., Biruk, S., and Bucon, R. (2010). “Assessing contractor selection criteria weights with fuzzy AHP method application in group decision environment.” Automation in Construction, Vol. 19, No. 2, pp. 120–126, DOI: 10.1016/j.autcon.2009.12.014.

    Article  Google Scholar 

  • Kahraman, C., Oztaysi, B., Sari, I. U., and Turanoglu, E. (2014). “Fuzzy analytic hierarchy process with interval type-2 fuzzy sets.” Knowledge-Based Systems, Vol. 59, pp. 48–57, DOI: 10.1016/j.knosys.2014.02.001.

    Article  Google Scholar 

  • Lin, Ch. and Kou, G. (2015). “Bayesian revision of the individual pairwise comparison under consensus in AHP-GDM.” Applied Soft Computing, Vol. 35, pp. 802–811, DOI: 10.1016/j.asoc.2015.02.041.

    Article  Google Scholar 

  • Liu, B., Huo, T., Liao, P.-Ch., Yuan, J., Sun., J., and Hu., X. (2017). “A special Partial Least Squares (PLS) path decision modelling for bid evaluation of large construction projects.” KSCE Journal of Civil Engineering, Vol. 21, No. 3, pp. 579–592, DOI: 10.1007/s12205-016-0702-3.

    Article  Google Scholar 

  • Mendel, J. M. (2007). “Type-2 fuzzy sets and systems: An overview.” IEEE Computational Intelligence Magazine, Vol. 2, No. 2, pp. 20–29, DOI: 10.1109/MCI.2007.357235.

    Article  Google Scholar 

  • Mendel, J. M., John, R. I., and Liu, F. L. (2006). “Interval type-2 fuzzy logical systems made simple.” IEEE Transactions on Fuzzy Systems, Vol. 14, No. 6, pp. 808–821, DOI: 10.1109/TFUZZ.2006.879986.

    Article  Google Scholar 

  • Mikhailov, L. (2003). “Deriving priorities from fuzzy pairwise comparison judgments.” Fuzzy Sets and Systems, Vol. 134, No. 3, pp. 365–385, DOI: 10.1016/S0165-0114(02)00383-4.

    Article  MathSciNet  MATH  Google Scholar 

  • Mikhailov, L. (2004). “Group prioritization in AHP by fuzzy preference programing method.” Computers & Operations Research, Vol. 31, No. 2, pp. 293–301, DOI: 10.1016/S0305-0548(03)00012-1.

    Article  MATH  Google Scholar 

  • Minchin, R. E. and Smith, G. R. (2005). “Quality-based contractor rating model for qualification and bidding purposes.” Journal od Management in Engineering, Vol. 21, No. 1, pp. 38–43, DOI: 10.1061/(ASCE)0742-597X(2005)21:1(38).

    Google Scholar 

  • Nieto-Morote, A. and Ruz-Vila, F. (2012). “A fuzzy multi-criteria decision-making model for construction contractor prequalification.” Automation in Construction, Vol. 25, pp. 8–19, DOI: 10.1016/j.autcon.2012.04.004.

    Article  Google Scholar 

  • Ossadnik, W., Schinke, S., and Kaspar, R. H. (2016). “Group aggregation techniques for analytic network process: A comparative analysis.” Group Decision and Negotiation, Vol. 25, No. 2, pp. 421–457, DOI: 10.1007/s10726-015-9448-4.

    Article  Google Scholar 

  • Padhi, S. S., and Mohapatra, P. K. (2010). “Centralized bid evaluation for awarding of construction projects–A case of India government.” International Journal of Project Management, Vol. 28, No. 3, pp. 275–284, DOI: 10.1016/j.ijproman.2009.06.001.

    Article  Google Scholar 

  • Plebankiewicz, E. (2009). “Contractor prequalification model using fuzzy sets.” Journal of Civil Engineering and Management, Vol. 15, No. 4, pp. 377–385, DOI: 10.3846/1392-3730.2009.15.377-385.

    Article  Google Scholar 

  • Plebankiewicz, E. and Dziadosz, A. (2006). Wybrane zagadnienia prekwalifikacji wykonawców robót budowlanych.” Przeglad budowlany, No. 5, pp. 45–49.

    Google Scholar 

  • Ramanathan, R. and Ganesh, L. S. (1994). “Group preference aggregation methods employed in AHP: An evaluation and an intrinsic process for deriving members.” European Journal of Operational Research, Vol. 79, No. 2, pp. 249–265, DOI: 10.1016/0377-2217(94)90356-5.

    Article  MATH  Google Scholar 

  • Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Saaty, T. L. (1989). “Group decision making and the AHP.” in: Golden, B. L., Wasil, E. A., and Harker, P. T. (Eds.), The Analytic Hierarchy Process, Springer, Heidelberg, pp. 59–67, DOI: 10.1007/978-3-642-50244-6_4.

    Chapter  Google Scholar 

  • Saaty, T. L. (2013). “The modern science of multicriteria decision making and its practical applications: The AHP/ANP approach.” Operations Research, Vol. 61, No. 5, pp. 1101–1118, DOI: 10.1287/opre.2013.1197.

    Article  MathSciNet  MATH  Google Scholar 

  • Saaty, T. L. and Tran, L. T. (2007). “On the invalidity of fuzzifying numerical judgments in the Analytic Hierarchy Process.” Mathematical and Computer Modelling, Vol. 46, Nos. 7–8, pp. 962–975, DOI: 10.1016/j.mcm.2007.03.022.

    Article  MathSciNet  MATH  Google Scholar 

  • Saaty, T. L., and Vargas, L. G. (2007). “Dispersion of group judgments.” Mathematical and Computer Modelling, Vol. 46, Nos. 7–8, pp. 918–925, DOI: 10.1016/j.mcm.2007.03.004.

    Article  MathSciNet  MATH  Google Scholar 

  • San Cristobal, J. R. (2012). “Contractor selection using multicriteria decision-making methods.” Journal of Construction Engineering and Management, Vol. 138, No. 6, pp. 751–758, DOI: 10.1061/(ASCE)CO.1943-7862.0000488.

    Article  Google Scholar 

  • Tang, L. Ch., Goh, T. N., Yam, H. S., and Yoap, T. (2006). Six Sigma. Advanced tools for black belts and master black belts. John Wiley & Sons, p. 78.

    Book  Google Scholar 

  • Taormina, R. and Chau, K.-W. (2015). “Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines.” Journal of Hydrology, Vol. 529, No. 3, pp. 1617–1632, DOI: 10.1016/j.jhydrol.2015.08.022.

    Article  Google Scholar 

  • Topcu, Y. I. (2004). “A decision model proposal for construction contractor selection in Turkey.” Building and Environment, Vol. 39, No. 4, pp. 469–481, DOI: 10.1016/j.buildenv.2003.09.009.

    Article  Google Scholar 

  • Trzaskalik, T. (2014). Wielokryterialne wspomaganie decyzji, Metody i zastosowania, PWE, Warszawa.

    Google Scholar 

  • Turskis, Z. (2008). “Multi-attribute contractors ranking method by applying ordering of feasible alternatives of solutions in terms of preferability technique.” Technological and Economic Development, Vol. 14, No. 2, pp. 224–239, DOI: 10.3846/1392-8619.2008.14.224-239.

    Article  MathSciNet  Google Scholar 

  • Ulubeyli, S. and Kazaz, A. (2016). “Fuzzy multi-criteria decision making model for subcontractor selection in international construction projects.” Technological and Economic Development of Economy, Vol. 22, pp. 210–234, DOI: 10.3846/20294913.2014.984363.

    Article  Google Scholar 

  • Vaidya, O. S. and Kumar, S. (2006). “Analytic hierarchy process: An overview of applications.” European Journal of Operational Research, Vol. 169, No. 1, pp. 1–29, DOI: 10.1016/j.ejor.2004.04.028.

    Article  MathSciNet  MATH  Google Scholar 

  • van der Honert, R. C., and Lootsma, F. A. (1996). “Group preference aggregation in the multiplicative AHP–the model of the group decision process and Pareto optimality.” European Journal of Operational Research, Vol. 96, No. 2, pp. 363–370, DOI: 10.1016/0377-2217(95)00345-2

    Article  MATH  Google Scholar 

  • van der Honert, R.C. (1998). “Stochastic group preference modelling in the multiplicative AHP: A model of group consensus.” European Journal of Operational Research, Vol. 110, No. 1, pp. 99–111, DOI: 10.1016/S0377-2217(97)00243-9.

    Article  MATH  Google Scholar 

  • van Laarhoven, P. J. M., and Pedrycz, W. (1983). “Fuzzy extension for Saaty’s priority theory.” Fuzzy Sets and Systems, Vol. 11, Nos. 1–3, pp. 229–241, DOI: 10.1016/S0165-0114(83)80082-7.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, W., Chau, K., Xu, D., and Chen, X.-Y. (2015). “Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition.” Water Resources Management, Vol. 29, No. 8, pp. 2655–2675, DOI: 10.1007/s11269-015-0962-6.

    Article  Google Scholar 

  • Wang, Y.-M., Luo, Y., and Hua, Z. (2008). “On the extent analysis method for fuzzy AHP and its applications.” European Journal of Operational Research, Vol. 186, No. 2, pp. 735–747, DOI: 10.1016/j.ejor.2007.01.050.

    Article  MATH  Google Scholar 

  • Xu, Z. and Liao, H. (2014). “Intuitionistic Fuzzy Analytic Hierarchy Process.” IEEE Transactions on Fuzzy Systems, Vol. 22, No. 4, pp. 749–761, DOI: 10.1109/TFUZZ.2013.2272585.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). “Fuzzy sets.” Information and Control, Vol. 8, No. 3, pp. 338–353, DOI: 10.1016/S0019-9958(65)90241-X.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. A. (1975). “The concept of linguistic variable and its application to approximate reasoning-I.” Information Sciences, Vol. 8, No. 3, pp. 199–249, DOI: 10.1016/0020-0255(75)90036-5.

    Article  MathSciNet  MATH  Google Scholar 

  • Zavadskas, E. K., Vilutiene, T., Turskis, Z., and Tamosaitiene, J. (2010). “Contractor selection for construction works by applying SAW-G and TOPSIS grey techniques.” Journal of Business Economics and Management, Vol. 11, No. 1, pp. 181–187, DOI: 10.3846/jbem.2010.03.

    Article  Google Scholar 

  • Zhang, S. and Chau, K.-W. (2009). Dimension Reduction Using Semi-Supervised Locally Linear Embedding for Plant Leaf Classification. In Emerging Intelligent Computing Technology and Applications (pp. 948–955). Springer, Berlin, Heidelberg, DOI: 10.1007/978-3-642-04070-2_100.

    Chapter  Google Scholar 

  • Zimmermann, J.-J. (2001). Fuzzy set theory – and its application (4th Ed.). Springer Science + Business Media, New York, DOI: 10.1007/978-94-010-0646-0.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Tomczak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomczak, M., Jaśkowski, P. Application of Type-2 Interval Fuzzy Sets to Contractor Qualification Process. KSCE J Civ Eng 22, 2702–2713 (2018). https://doi.org/10.1007/s12205-017-0431-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0431-2

Keywords

Navigation