Skip to main content
Log in

Dosimetric comparison of four-dimensional computed tomography based internal target volume against variations in respiratory motion during treatment between volumetric modulated arc therapy and three-dimensional conformal radiotherapy in lung stereotactic body radiotherapy

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

This study focused on the dosimetric impact of variations in respiratory motion during lung stereotactic body radiotherapy (SBRT). Dosimetric comparisons between volumetric modulated arc therapy (VMAT) and three-dimensional conformal radiotherapy (3DCRT) were performed using four-dimensional computed tomography (4DCT)-based internal target volumes (ITV). We created retrospective plans for ten patients with lung cancer who underwent SBRT using 3DCRT and VMAT techniques. A Delta4 Phantom + (ScandiDos, Uppsala, Sweden) was used to evaluate the dosimetric robustness of 4DCT-based ITV against variations in respiratory motion during treatment. We analyzed respiratory motion during treatment. Dose–volume histogram parameters were evaluated for the 95% dose (D95%) to the planning target volume (PTV) contoured on CT images obtained under free breathing. The correlations between patient respiratory parameters and dosimetric errors were also evaluated. In the phantom study, the average PTV D95% dose differences for all fractions were − 2.9 ± 4.4% (− 16.0 − 1.2%) and − 2.0 ± 2.8% (− 11.2 − 0.7%) for 3DCRT and VMAT, respectively. The average dose difference was < 3% for both 3DCRT and VMAT; however, in 5 out of 42 fractions in 3DCRT, the difference in PTV D95% was > 10%. Dosimetric errors were correlated with respiratory amplitude and velocity, and differences in respiratory amplitude between 4DCT and treatment days were the main factors causing dosimetric errors. The overall average dose error of the PTV D95% was small; however, both 3DCRT and VMAT cases exceeding 10% error were observed. Larger errors occurred with amplitude variation or baseline drift, indicating limited robustness of 4DCT-based ITV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM task group 76. Med Phys. 2006;33:3874–900.

    Article  PubMed  Google Scholar 

  2. Schwarz M, Cattaneo GM, Marrazzo L. Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: a review. Phys Medica. 2017;36:126–39.

    Article  Google Scholar 

  3. Underberg RWM, Lagerwaard FJ, Cuijpers JP, Slotman BJ, Van Sörnsen De KJR, Senan S. Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer. Int J Radiat Oncol Biol Phys. 2004;60:1283–90.

    Article  PubMed  Google Scholar 

  4. Cai J, Read PW, Baisden JM, Larner JM, Benedict SH, Sheng K. Estimation of error in maximal intensity projection-based internal target volume of lung tumors: a simulation and comparison study using dynamic magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2007;69:895–902.

    Article  PubMed  Google Scholar 

  5. Purdie TG, Moseley DJ, Bissonnette JP, Sharpe MB, Franks K, Bezjak A, et al. Respiration correlated cone-beam computed tomography and 4DCT for evaluating target motion in stereotactic lung radiation therapy. Acta Oncol (Madr). 2006;45:915–22.

    Article  Google Scholar 

  6. Steiner E, Shieh CC, Caillet V, Booth J, O’Brien R, Briggs A, et al. Both four-dimensional computed tomography and four-dimensional cone beam computed tomography under-predict lung target motion during radiotherapy. Radiother Oncol. 2019;135:65–73.

    Article  PubMed  Google Scholar 

  7. Takao S, Miyamoto N, Matsuura T, Onimaru R, Katoh N, Inoue T, et al. Intrafractional baseline shift or drift of lung tumor motion during gated radiation therapy with a real-time tumor-tracking system. Int J Radiat Oncol. 2016;94:172–80.

    Article  Google Scholar 

  8. Leste J, Medjahed I, Arnaud FX, Ferrand R, Franceries X, Bardies M, et al. A study of the interplay effect for VMAT SBRT using a four-axes motion phantom. J Appl Clin Med Phys. 2020;21:208–15.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang W, Chen D, Han C, Zheng X, Zhou Y, Gong C, et al. Partial and full arc volumetric modulated arc therapy in lung cancer stereotactic body radiotherapy with different definitions of internal target volume based on 4D CT. Int J Med Phys Clin Eng Radiat Oncol. 2018;07:491–502.

    Article  CAS  Google Scholar 

  10. Afrin KT, Ahmad S (2021) Is IMRT or VMAT superior or inferior to 3D conformal therapy in the treatment of lung cancer? A brief literature review. J Radiother Pract

  11. Shirato H, Shimizu S, Kitamura K, Nishioka T, Kagei K, Hashimoto S, et al. Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys. 2000;48:435–42.

    Article  CAS  PubMed  Google Scholar 

  12. Shiinoki T, Onizuka R, Kawahara D, Suzuki T, Yuasa Y, Fujimoto K, et al. Estimation of patient-specific imaging dose for real-time tumour monitoring in lung patients during respiratory-gated radiotherapy. Phys Med Biol. 2018;63:2018–21.

    Article  Google Scholar 

  13. Imura M, Yamazaki K, Shirato H, Onimaru R, Fujino M, Shimizu S, et al. Insertion and fixation of fiducial markers for setup and tracking of lung tumors in radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63:1442–7.

    Article  PubMed  Google Scholar 

  14. Tanabe Y, Kiritani M, Deguchi T, Hira N, Tomimoto S. Patient-specific respiratory motion management using lung tumors vs fiducial markers for real-time tumor-tracking stereotactic body radiotherapy. Phys Imaging Radiat Oncol. 2023;25:100405.

    Article  PubMed  Google Scholar 

  15. Edvardsson A, Nordström F, Ceberg C, Ceberg S. Motion induced interplay effects for VMAT radiotherapy. Phys Med Biol. 2018;63:1–15.

    Article  Google Scholar 

  16. Bortfeld T, Jokivarsi K, Goitein M, Kung J, Jiang SB. Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation. Phys Med Biol. 2002;47:2203–20.

    Article  PubMed  Google Scholar 

  17. Videtic GMM, Hu C, Singh AK, Chang JY, Parker W, Olivier KR, et al. A randomized phase 2 study comparing 2 stereotactic body radiation therapy schedules for medically inoperable patients with stage i peripheral non-small cell lung cancer: NRG oncology RTOG 0915 (NCCTG N0927). Int J Radiat Oncol Biol Phys. 2015;93:757–64.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shiinoki T, Hanazawa H, Yuasa Y, Fujimoto K, Uehara T, Shibuya K. Verification of respiratory-gated radiotherapy with new real-time tumour-tracking radiotherapy system using cine EPID images and a log file. Phys Med Biol. 2017;62:1585–99.

    Article  CAS  PubMed  Google Scholar 

  19. Kitagawa M, Hirosawa A, Takemura A. Evaluation of time delay and fluoroscopic dose in a new real-time tumor-tracking radiotherapy system. IFMBE Proc. 2019;68:487–91.

    Article  Google Scholar 

  20. Mori S, Knopf AC, Umegaki K. Motion management in particle therapy. Med Phys. 2018;45:e994-1010.

    Article  PubMed  Google Scholar 

  21. Ernst F, Schlaefer A, Schweikard A. Smoothing of respiratory motion traces for motion-compensated radiotherapy. Med Phys. 2010;37:282–94.

    Article  PubMed  Google Scholar 

  22. Bedford JL, Lee YK, Wai P, South CP, Warrington AP. Evaluation of the Delta4 phantom for IMRT and VMAT verification. Phys Med Biol. 2009;54:167–76.

    Article  Google Scholar 

  23. Capomolla C, Zagari A, Quarta S, De LD, Carlà A, Cazzato M, et al. 131 Performance analysis of new Delta4 Phantom+ using flattening-filter and flattening filter-free beams. Phys Medica. 2018;56:146.

    Article  Google Scholar 

  24. Satory P, Rice A, Ng JA, Booth JT. Commissioning the Delta4 hexamotion 6d motion JIG. Eng Phys Sci Med Conf. 2013;84:2013.

    Google Scholar 

  25. Liu HH, Balter P, Tutt T, Choi B, Zhang J, Wang C, et al. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys. 2007;68:531–40.

    Article  PubMed  Google Scholar 

  26. Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task Group No. 218. Med Phys. 2018;45:e53-83.

    Article  PubMed  Google Scholar 

  27. Menten MJ, Wetscherek A, Fast MF. MRI-guided lung SBRT: present and future developments. Phys Medica. 2017;44:139–49.

    Article  Google Scholar 

  28. Booth J, Caillet V, Briggs A, Hardcastle N, Angelis G, Jayamanne D, et al. MLC tracking for lung SABR is feasible, efficient and delivers high-precision target dose and lower normal tissue dose. Radiother Oncol. 2021;155:131–7.

    Article  PubMed  Google Scholar 

  29. Harada K, Katoh N, Suzuki R, Ito YM, Shimizu S, Onimaru R, et al. Evaluation of the motion of lung tumors during stereotactic body radiation therapy (SBRT) with four-dimensional computed tomography (4DCT) using real-time tumor-tracking radiotherapy system (RTRT). Phys Medica. 2016;32:305–11.

    Article  Google Scholar 

  30. Duggan DM, Ding GX, Coffey CW, Kirby W, Hallahan DE, Malcolm A, et al. Deep-inspiration breath-hold kilovoltage cone-beam CT for setup of stereotactic body radiation therapy for lung tumors: Initial experience. Lung Cancer. 2007;56:77–88.

    Article  PubMed  Google Scholar 

  31. Pokhrel D, Visak J, Critchfield LC, Stephen J, Bernard ME, Randall M, et al. Clinical validation of ring-mounted halcyon linac for lung SBRT: comparison to SBRT-dedicated C-arm linac treatments. J Appl Clin Med Phys. 2021;22:261–70.

    Article  PubMed  Google Scholar 

  32. Pokhrel D, Sanford L, Dhanireddy B, Molloy J, Randall M, McGarry RC. Flattening filter free VMAT for a stereotactic, single-dose of 30 Gy to lung lesion in a 15-min treatment slot. J Appl Clin Med Phys. 2020;21:6–12.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ong CL, Dahele M, Slotman BJ, Verbakel WFAR. Dosimetric impact of the interplay effect during stereotactic lung radiation therapy delivery using flattening filter-free beams and volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys. 2013;86:743–8.

    Article  PubMed  Google Scholar 

Download references

Funding

Funding for this research was provided by a university research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Takatsu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

The Institutional Review Board of Juntendo University approved this retrospective study and waived the requirement for informed consent from patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimoto, D., Takatsu, J., Hara, N. et al. Dosimetric comparison of four-dimensional computed tomography based internal target volume against variations in respiratory motion during treatment between volumetric modulated arc therapy and three-dimensional conformal radiotherapy in lung stereotactic body radiotherapy. Radiol Phys Technol 17, 143–152 (2024). https://doi.org/10.1007/s12194-023-00757-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00757-8

Keywords

Navigation