Skip to main content

Advertisement

Log in

Creation, evolution, and future challenges of ion beam therapy from a medical physicist’s viewpoint (Part 3): Chapter 3. Clinical research, Chapter 4. Future challenges, Chapter 5. Discussion, and Conclusion

  • Review Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Clinical studies of ion beam therapy have been performed at the Lawrence Berkeley Laboratory (LBL), National Institute of Radiological Sciences (NIRS), Gesellschaft für Schwerionenforschung (GSI), and Deutsches Krebsforschungszentrum (DKFZ), in addition to the development of equipment, biophysical models, and treatment planning systems. Although cancers, including brain tumors and pancreatic cancer, have been treated with the Bevalac’s neon-ion beam at the LBL (where the first clinical research was conducted), insufficient results were obtained owing to the limited availability of neon-ion beams and immaturity of related technologies. However, the 184-Inch Cyclotron’s helium-ion beam yielded promising results for chordomas and chondrosarcomas at the base of the skull. Using carbon-ion beams, NIRS has conducted clinical trials for the treatment of common cancers for which radiotherapy is indicated. Because better results than X-ray therapy results have been obtained for lung, liver, pancreas, and prostate cancers, as well as pelvic recurrences of rectal cancer, the Japanese government recently approved the use of public medical insurance for carbon-ion radiotherapy, except for lung cancer. GSI obtained better results than LBL for bone and soft tissue tumors, owing to dose enhancement enabled by scanning irradiation. In addition, DKFZ compared treatment results of proton and carbon-ion radiotherapy for these tumors. This article summarizes a series of articles (Parts 1–3) and describes future issues of immune ion beam therapy and linear energy transfer optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3D CRT:

Three-dimensional conformal radiotherapy

ACC:

Adenoid cystic carcinoma

ART:

Adaptive radiotherapy

AVM:

Arteriovenous malformation

bRFS:

Biochemical recurrent-free survival

CIRT:

Carbon-ion radiotherapy

CMT:

Combined modality therapy

CSS:

Cause-specific survival

CTV:

Clinical target volume

DKFZ:

Deutsches Krebsforschungszentrum (German Cancer Research Center)

GSI:

Gesellschaft für Schwerionenforschung (Society for Heavy Ion Research)

GTV:

Gross tumor volume

HIT:

Heidelberg Ion-Beam Therapy Center

HIMAC:

Heavy Ion Medical Accelerator in Chiba

HCC:

Hepatocellular carcinoma

ICI:

Immune checkpoint inhibitor

ICRU:

International Commission on Radiation Units and Measurements

IHC:

Intrahepatic cholangiocarcinoma

IMRT:

Intensity-modulated radiotherapy

JASTRO:

Japanese Society for Radiation Oncology

J-CROS:

Japan Carbon-ion Radiation Oncology Study Group

LBL:

Lawrence Berkeley Laboratory

LC:

Local control

LEM:

Local effect model

LET:

Linear energy transfer

MGH:

Massachusetts General Hospital

MKM:

Microdosimetric kinetic model

MST:

Median survival time

NIRS:

National Institute of Radiological Sciences

NSCLC:

Non-small-cell lung cancer

OAR:

Organ at risk

OER:

Oxygen enhancement ratio

OS:

Overall survival

PHC:

Perihilar cholangiocarcinoma

PSA:

Prostate-specific antigen

RBE:

Relative biological effectiveness

SOBP:

Spread-out Bragg peak

SBRT:

Stereotactic body radiotherapy

TACE:

Transcatheter arterial chemoembolization

WEL:

Water equivalent length

References

  1. Endo M. Construction of heavy ion accelerator in Chiba (HIMAC) and its consequences—from medical physics viewpoint: part 1. Period until treatment Start (1975–1994). Jpn J Med Phys. 2020;40:61–7 (in Japanese).

    Google Scholar 

  2. Endo M. Construction of Heavy Ion Accelerator in Chiba (HIMAC) and its consequences—from medical physics viewpoint: part 2. Advancement of broad beam irradiation and development of a new compact-sized therapy accelerator (1994–2010). Jpn J Med Phys. 2020;40:97–105 (in Japanese).

    Google Scholar 

  3. Endo M. Construction of Heavy Ion Accelerator in Chiba (HIMAC) and its consequences—from medical physics viewpoint: part 3. Development of scanning irradiation and construction of new facility (2006–). Jpn J Med Phys. 2020;40:126–38 (in Japanese).

    Google Scholar 

  4. Endo M. Construction of Heavy Ion Accelerator in Chiba (HIMAC) and its consequences—from medical physics viewpoint: part 4. Outline of clinical research and future prospects. Jpn J Med Phys. 2021;41:10–21 (in Japanese).

    Google Scholar 

  5. Endo M. Creation, evolution, and future challenges of ion beam therapy from a medical physicist’s viewpoint (Part 1). Introduction and Chapter 1. Accelerator and beam delivery system. Radiol Phys Technol. 2022;15:271–90.

    Article  PubMed  Google Scholar 

  6. Endo M. Creation, evolution, and future challenges of ion beam therapy from a medical physicist’s viewpoint (Part 2)—Chapter 2. Bio-physical model and treatment planning system. Radiol Phys Technol. 2023;16:137–59.

    Article  PubMed  Google Scholar 

  7. International Commission on Radiation Units and Measurements. ICRU Report 93. Prescribing, recording, and reporting light ion beam therapy. J ICRU. 2019;16(1–2). https://www.icru.org/report/icru-report-93-prescribing-recording-and-reporting-light-ion-beam-therapy/. Accessed 27 Sept 2023.

  8. Endo M. Robert R. Wilson (1914–2000): the first scientist to propose particle therapy—use of particle beam for cancer treatment. Radiol Phys Technol. 2018;11:1–6.

    Article  PubMed  Google Scholar 

  9. Alonso JR, Castro JR. light-ion therapy in the US: from the Bevalac to??. In: XVI Congress of Health Econometrics of the IAEA, Ajaccio, France, 9–11 Oct 2002. https://www.osti.gov/servlets/purl/803872. Accessed 23 Oct 2023.

  10. Particle therapy cooperation group. Patient statistics. https://ptcog.site/images/Statistics/Patientstatistics-updateDec2021Sep6.2022provisional.pdf. Accessed 27 Sept 2023.

  11. Linstadt DE, Castro JR, Philips T. Neon ion radiotherapy: results of the phase I/II clinical trial. Int J Radiat Oncol Biol Phys. 1991;20:761–9.

    Article  CAS  PubMed  Google Scholar 

  12. Castro JR, Linstadt DE, Bahary J-P, et al. Experience in charge particle irradiation of tumors of the skull base: 1977–1992. Int J Radiat Oncol Biol Phys. 1994;29:647–55.

    Article  CAS  PubMed  Google Scholar 

  13. Munzenrider JE, Austin-Seymour M, Blitzer PJ, et al. Proton therapy at Harvard. Strahlentherapie. 1985;161:756–63.

    CAS  PubMed  Google Scholar 

  14. Austin-Seymour M, Munzenrider J, Goitein M, et al. Fractionated proton radiation therapy of chordoma and low-grade chondrosarcoma of the base of the skull. J Neurosurg. 1989;70:13–7.

    Article  CAS  PubMed  Google Scholar 

  15. Austin-Seymour M, Munzenrider JE, Goitein M, et al. Progress in low LET heavy particle therapy: intracranial and paracranial tumors and uveal melanomas. Radiat Res. 1985;104:S219–26.

    Article  Google Scholar 

  16. Slater JD, Yonemoto LT, Rossi CJ Jr, et al. Conformal proton therapy for prostate carcinoma. Int J Radiat Oncol Biol Phys. 1998;42:299–304.

    Article  CAS  PubMed  Google Scholar 

  17. Fukumoto S. Proton beam therapy at Tsukuba. Proc of a Medical Workshop on Accelerators for Charged-Particle Beam Therapy, pp. 1–5, Fermilab, January 1985. https://lss.fnal.gov/conf/C850125/pg1.pdf. Accessed 23 Oct 2023.

  18. Tsuji H, Tsujii H, Okumura T, et al. Preliminary results of proton radiotherapy at the Proton Medical Research Center, Tsukuba. J JASTRO. 1995;7:303–13. https://doi.org/10.11182/jastro1989.7.303 (in Japanese).

    Article  Google Scholar 

  19. Tsujii T. Radiotherapy Research. In: National Institute of Radiological Sciences (NIRS), editor. 50-year history of the National Institute of Radiological Sciences. Chiba: NIRS; 2007. p. 155–205 (in Japanese).

  20. Sone S, Takashima S, Li F, et al. Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet. 1998;351:1242–5.

    Article  CAS  PubMed  Google Scholar 

  21. Withers HR, Taylor JMG, Maciejewski B. Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys. 1998;14:751–9.

    Article  Google Scholar 

  22. Ando K, Koike S, Nojima K, et al. Mouse skin damages caused by fractionated irradiation with carbon ions. Int J Radiat Biol. 1998;74:129–38.

    Article  CAS  PubMed  Google Scholar 

  23. Koike S, Ando K, Oohara C, et al. Relative biological effectiveness of 290 MeV/u carbon ions for the growth delay of a radioresistant murine fibrosarcoma. J Radiat Res. 2002;43:247–55.

    Article  PubMed  Google Scholar 

  24. Ando K, Koike S, Uzawa A, et al. Biological gain of carbon-ion radiotherapy for the early response of tumor growth delay and against early response of skin reaction in mice. J Radiat Res. 2005;46:51–7.

    Article  PubMed  Google Scholar 

  25. Japanese Society for Radiation Oncology: Indications and unified treatment policy for particle beam therapy (proton beam therapy, heavy ion beam therapy) as advanced medical care. 2016. https://www.jastro.or.jp/medicalpersonnel/particle_beam/2016/02/post-2.html. Accessed 27 Sept 2023 (in Japanese).

  26. Patel SH, Wang Z, Wong WW, et al. Charged particle therapy versus photon therapy for paranasal sinus and nasal cavity malignant diseases: a systematic review and meta-analysis. Lancet Oncol. 2014;15:1027–38.

    Article  CAS  PubMed  Google Scholar 

  27. Koto M, Demizu Y, Saitoh JI, et al. Japan Carbon-ion Radiation Oncology Study Group, Multicenter study of carbon-ion radiation therapy for mucosal melanoma of the head and neck: Subanalysis of the Japan Carbon-ion Radiation Oncology Study Group study. Int J Radiat Oncol Biol Phys. 2017;97:1054–60.

    Article  PubMed  Google Scholar 

  28. Sulaiman NS, Demizu Y, Koto M, et al. Multicenter study of carbon-ion radiation therapy for adenoid cystic carcinoma of the head and neck: subanalysis of the Japan Carbon-Ion Radiation Oncology Study Group (J-CROS) Study (1402 HN). Int J Radiat Oncol Biol Phys. 2018;100:639–46.

    Article  PubMed  Google Scholar 

  29. Matsunobu A, Imai R, Kamada T, et al. Impact of carbon ion radiotherapy for unresectable osteosarcoma of the trunk. Cancer. 2012;118:4555–63.

    Article  PubMed  Google Scholar 

  30. Imai R, Kamada T, Araki N, Abe S, et al. Working Group for Bone and Soft Tissue Sarcomas, Carbon ion radiation therapy for unresectable sacral chordoma: an analysis of 188 cases. Int J Radiat Oncol Biol Phys. 2016;295:322–7.

    Article  Google Scholar 

  31. Yolcu YU, Jad Z, Wahood W, et al. Comparison of oncologic outcomes and treatment-related toxicity of carbon ion radiotherapy and en Bloc resection for sacral chordoma. JAMA Network Open. 2022;5(1):e2141927.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Japan Society for Head and Neck Cancer. Report of head and neck cancer registry of Japan—clinical statistics of registered patients, 2019. 2022. http://www.jshnc.umin.ne.jp. HNCreport_2019. Accessed 27 Sept 2023.

  33. National Cancer Center. Cancer type statistical information. https://ganjoho.jp/reg_stat/statistics/stat/cancer/index.html. Accessed 27 Sept 2023 (in Japanese).

  34. National Cancer Center. Description of various rare cancers. https://www.ncc.go.jp/jp/rcc/about/. Accessed 27 Sept 2023 (in Japanese).

  35. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  36. Miyamoto T, Baba M, Yamamoto N, et al. Curative treatment of stage I non-small-cell lung cancer with carbon ion beams using a hypo-fractionated regimen. Int J Radiat Oncol Biol Phys. 2007;67:750–8.

    Article  CAS  PubMed  Google Scholar 

  37. Miyamoto T, Baba M, Sugane T, et al. Carbon ion radiotherapy for stage I non-small cell lung cancer using a regimen of four fractions during 1 week. J Thorac Oncol. 2007;2:916–26.

    Article  PubMed  Google Scholar 

  38. Yamamoto N, Miyamoto T, Nakajima M, et al. A dose escalation clinical trial of single-fraction carbon ion radiotherapy for peripheral stage I non-small cell lung cancer. J Thorac Oncol. 2017;12:673–80.

    Article  PubMed  Google Scholar 

  39. Ono T, Yamamoto N, Nomoto A, et al. Long term results of single-fraction carbon-ion radiotherapy for non-small cell lung cancer. Cancers (Basel). 2021;13(1):112.

    Article  CAS  Google Scholar 

  40. Siva S, Ball DL. Single fraction SBRT for early stage lung cancer—less is more? Int J Radiat Oncol Biol Phys. 2019;103:1085–7.

    Article  PubMed  Google Scholar 

  41. Endo M. History of medical physics. Radiol Phys Technol. 2021;14:345–57.

    Article  PubMed  Google Scholar 

  42. Nagata Y, Hiraoka M, Shibata T, et al. A Prospective trial of stereotactic body radiation therapy for both operable and inoperable T1N0M0 non-small cell lung cancer: Japan Clinical Oncology Group Study JCOG0403. Int J Radiat Oncol Biol Phys. 2015;93:989–96.

    Article  PubMed  Google Scholar 

  43. Onishi H, Shirato H, Nagata Y, et al. Stereotactic body radiotherapy (SBRT) for operable stage I non-small cell lung cancer: can SBRT be comparable to surgery? Int J Radiat Oncol Biol Phys. 2011;81:1352–8.

    Article  PubMed  Google Scholar 

  44. Ohnishi K, Nakamura N, Harada H, et al. Proton beam therapy for histologically or clinically diagnosed stage I non-small cell lung cancer (NSCLC): the first nationwide retrospective study in Japan. Int J Radiat Oncol Biol Phys. 2020;106:82–9.

    Article  CAS  PubMed  Google Scholar 

  45. Okami J, Shintani Y, Okumura M, et al. Demographics, safety and quality, and prognostic information in both the seventh and eighth editions of the TNM classification in 18,973 surgical cases of the Japanese Joint Committee of Lung Cancer Registry Database in 2010. J Thorac Oncol. 2019;14:212–22.

    Article  PubMed  Google Scholar 

  46. Anzai M, Yamamoto N, Hayashi K, et al. Safety and efficacy of carbon-ion radiotherapy alone for stage ΙΙΙ non-small cell lung cancer. Anticancer Res. 2020;40:379–86.

    Article  CAS  PubMed  Google Scholar 

  47. Bradley JD, Paulus R, Komaki R, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;162:187–99.

    Article  Google Scholar 

  48. Chang JY, Verma V, Li M, et al. Proton beam radiotherapy and concurrent chemotherapy for unresectable stage III non–small cell lung cancer. Final results of a phase 2 study. JAMA Oncol. 2017;3(8): e172032. https://doi.org/10.1001/jamaoncol.2017.2032.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Antonia SJ, Villegas A, Daniel D, et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 2018;379:2342–50.

    Article  CAS  PubMed  Google Scholar 

  50. Kasuya G, Kato H, Yasuda S, Tsuji H, et al. Liver Cancer Working Group, progressive hypofractionated carbon-ion radiotherapy for hepatocellular carcinoma. Cancer. 2017;123:3955–65.

    Article  CAS  PubMed  Google Scholar 

  51. Yasuda S, Kato H, Imada H, et al. Long-term results of high-dose 2-fraction carbon ion radiation therapy for hepatocellular carcinoma. Adv Radiat Oncol. 2020;5:196–203.

    Article  PubMed  Google Scholar 

  52. Nomiya T, Tsuji H, Kawamura H, et al. A multi-institutional analysis of prospective studies of carbon ion radiotherapy for prostate cancer: a report from the Japan Carbon Ion Radiation Oncology Study Group. Radiother Oncol. 2016;121:288–93.

    Article  PubMed  Google Scholar 

  53. Michalski J, Winter K, Roach M, et al. Clinical outcome of patients treated with 3D conformal radiation therapy (3D-CRT) for prostate cancer on RTOG 9406. Int J Radiat Oncol Biol Phys. 2012;83:e363–70.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mendenhall NP, Hoppe BS, Nichols RC, et al. Five-year outcomes from 3 prospective trials of image-guided proton therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2014;88:596–602.

    Article  PubMed  Google Scholar 

  55. Shinoto M, Yamada S, Terashima K, et al. Carbon ion radiation therapy with concurrent gemcitabine for patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2016;95:498–504.

    Article  CAS  PubMed  Google Scholar 

  56. Kawashiro S, Yamada S, Okamoto M, et al. Multi-institutional study of carbon-ion radiotherapy for locally advanced pancreatic cancer: Japan Carbon-ion Radiation Oncology Study Group. Int J Radiat Oncol Biol Phys. 2018;101:1212–21.

    Article  PubMed  Google Scholar 

  57. Sinoto M, Terashima K, Suefuji H, et al. A single institutional experience of combined carbon-ion radiotherapy and chemotherapy for unresectable locally advanced pancreatic cancer. Radiother Oncol. 2018;129:333–9.

    Article  Google Scholar 

  58. Yamada S, Kamada T, Ebner DK, et al. Carbon-ion radiation therapy for pelvic recurrence of rectal cancer. Int J Radiat Oncol Biol Phys. 2016;96:93–101.

    Article  PubMed  Google Scholar 

  59. Jeans EB, Ebner DK, Takiyama H, et al. Comparing oncologic outcomes and toxicity for combined modality therapy vs. carbon-ion radiotherapy for previously irradiated locally recurrent rectal cancer. Cancers. 2023;15:3057. https://doi.org/10.3390/cancers15113057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kasuya G, Terashima K, Shibuya K, et al. Carbon-ion radiotherapy for cholangiocarcinoma: a multi-institutional study by the Japan carbon-ion radiation oncology study group (J-CROS). Oncotarget. 2019;10:4369–79.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Okonogi N, Ando K, Murata K, et al. Multi-institutional retrospective analysis of carbon-ion radiotherapy for patients with locally advanced adenocarcinoma of the uterine cervix. Cancers. 2021;13:2713.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Japan Carbon-Ion Radiation Oncology Study Group (J-CROS). J-CROS Trial. https://www.nirs.qst.go.jp/hospital/J-CROS/. Accessed 27 Sept 2023 (in Japanese).

  63. Debus J. Introduction of carbon ion beam therapy in Europe and clinical trials. PTCOG 2019, Manchester UK. https://www.ptcog.ch/images/ptcog58/Scientific/0930_Debus.pdf. Accessed 27 Sept 2023.

  64. Uhl M, Mattke M, Welzel T, et al. Highly effective treatment of skull base chordoma with carbon ion irradiation using a raster scan technique in 155 patients: first long-term results. Cancer. 2014;120:3410–7.

    Article  CAS  PubMed  Google Scholar 

  65. Uhl M, Mattke M, Welzel T, et al. High control rate in patients with chondrosarcoma of the skull base after carbon ion therapy. Cancer. 2014;120:1579–85.

    Article  PubMed  Google Scholar 

  66. Jensen AD, Nikoghosyan AV, Poulakis M, et al. Combined intensity-modulated radiotherapy plus raster-scanned carbon ion boost for advanced adenoid cystic carcinoma of the head and neck results in superior locoregional control and overall survival. Cancer. 2015;121:3001–9.

    Article  CAS  PubMed  Google Scholar 

  67. Eichkorn T, König L, Held T, et al. Carbon ion radiation therapy: one decade of research and clinical experience at Heidelberg Ion Beam Therapy Center. Int J Radiat Oncol Biol Phys. 2021;111:597–609.

    Article  PubMed  Google Scholar 

  68. Mattke M, Vogt K, Bougaft N, et al. High control rates of proton- and carbon-ion–beam treatment with intensity-modulated active raster scanning in 101 patients with skull base chondrosarcoma at the Heidelberg Ion Beam Therapy Center. Cancer. 2018;124:2036–44.

    Article  CAS  PubMed  Google Scholar 

  69. Mattke M, Ohlinger M, Bougatf N, et al. Proton and carbon ion beam treatment with active raster scanning method in 147 patients with skull base chordoma at the Heidelberg Ion Beam Therapy Center—a single-center experience. Strahlenther Onkol. 2023; 199:160–168.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Otazo R, Lambin P, Pignol JP, et al. An emerging paradigm in adaptive radiation oncology. Radiology. 2021; 298:248–60.

    Article  Google Scholar 

  71. Hoffmann A, Oborn B, Moteabbed M, et al. MR-guided proton therapy: a review and a preview. Radiat Oncol. 2020;15:129.  https://doi.org/10.1186/s13014-020-01571-x.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Flohr T, Petersilka M, Henning A, et al. Photon-counting CT review. Phys Med. 2020;79:126–36.

    Article  PubMed  Google Scholar 

  73. Sato H, Okonogi N, Nakano T, et al. Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment. Int J Clin Oncol. 2023;2020(25):801–9. https://doi.org/10.1007/s10147-020-01666-1.

    Article  CAS  Google Scholar 

  74. Ishida Y, Agata Y, Honjo T, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11:3887–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182(2):459–65.

    Article  CAS  PubMed  Google Scholar 

  76. Ogasawara S, Koroki K, Makishima H, et al. Phase Ib trial of durvalumab plus tremelimumab in combination with particle radiotherapy in advanced hepatocellular carcinoma patients with macrovascular invasion: DEPARTURE trial. J Clin Oncol. 2023. https://doi.org/10.1200/JCO.2022.40.4_suppl.TPS495 

    Article  Google Scholar 

  77. Okonogi N, Usui H, Murata K, et al. Phase Ib study of durvalumab (MEDI4736) in combination with carbon-ion radiotherapy and weekly cisplatin for patients with locally advanced cervical cancer (DECISION study): study protocol for a prospective open-label single-arm study. BMJ Open. 2022;12(3): e056424. https://doi.org/10.1136/bmjopen-2021-056424.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Furusawa Y, Fukutsu K, Aoki M. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3He-, 12C- and 20Ne-ion beams. Radiat Res. 2000;154:485–96.

    Article  CAS  PubMed  Google Scholar 

  79. Bassler N, Jäkel O, Skou C, et al. Dose- and LET-painting with particle therapy. Acta Oncol. 2010;49:1170–6.

    Article  PubMed  Google Scholar 

  80. Bassler N, Toftegaard J, Lühr A, et al. LET-painting increases tumour control probability in hypoxic tumours. Acta Oncol. 2014;53:25–32.

    Article  PubMed  Google Scholar 

  81. Krämer M, Jäkel O. Biological dose optimization using ramp-like dose gradients in ion irradiation fields. Phys Med. 2005;21:107–11.

    Article  PubMed  Google Scholar 

  82. Böhlen TT, Brons S, Dosanjh M, et al. Investigating the robustness of ion beam therapy treatment plans to uncertainties in biological treatment parameters. Phys Med Biol. 2012;57:7983–8004.

    Article  PubMed  Google Scholar 

  83. Inaniwa T, Kanematsu N, Noda K, et al. Treatment planning of intensity modulated composite particle therapy with dose and linear energy transfer optimization. Phys Med Biol. 2017;62:5180–97.

    Article  CAS  PubMed  Google Scholar 

  84. Ebner DK, Frank SJ, Inaniwa T, et al. The emerging potential of multi-ion radiotherapy. Front Oncol. 2021;11: 624786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hagiwara Y, Bhattacharyya T, Matsufuji N, et al. Influence of dose-averaged linear energy transfer on tumour control after carbon-ion radiation therapy for pancreatic cancer. Clini Transl Radiat Oncol. 2020;21:19–24.

    Google Scholar 

  86. Particle therapy cooperation group. Facilities in operation. https://www.ptcog.site/index.php/facilities-in-operation-public. Accessed 27 Sept 2023.

Download references

Acknowledgements

I thank the editors of Radiological Physics and Technology and the Japanese Journal of Medical Physics (JJMP) for their consent to use the materials originally reported in the JJMP. I also would like to thank the anonymous reviewers for productive peer review comments.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

ME conceived the idea for the article, searched the literature, and drafted and revised the manuscript.

Corresponding author

Correspondence to Masahiro Endo.

Ethics declarations

Ethics approval

This study needs no ethics approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article includes materials originally reported by the same author in the Japanese Journal of Medical Physics [1,2,3,4] with the consent of the editors of both journals. The above articles are referred to in the corresponding sections when these materials are used.

This review consists of: Introduction; Chapter 1. Accelerator and beam delivery system; Chapter 2. Biophysical model and treatment planning system; Chapter 3. Clinical research; Chapter 4. Future challenges; Chapter 5. Discussion; Conclusion. Introduction and Chapter 1 have been published as Part 1 [5], and Chapter 2 has been published as Part 2 [6]. Chapter 3, Chapter 4, Chapter 5, and Conclusion are included in this article as Part 3. Because the Heading Number is attached independently to each article for production reasons, it does not necessarily match the above configuration.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, M. Creation, evolution, and future challenges of ion beam therapy from a medical physicist’s viewpoint (Part 3): Chapter 3. Clinical research, Chapter 4. Future challenges, Chapter 5. Discussion, and Conclusion. Radiol Phys Technol 16, 443–470 (2023). https://doi.org/10.1007/s12194-023-00748-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00748-9

Keywords

Navigation