Skip to main content
Log in

Altered resting-state functional connectivity of the brain in children with autism spectrum disorder

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders. Brain mapping has shown that functional brain connections are altered in autism. This study investigated the pattern of brain connection changes in autistic people compared to healthy people. This study aimed to analyze functional abnormalities within the brain due to ASD, using resting-state functional magnetic resonance imaging (fMRI). Resting-state functional magnetic resonance images of 26 individuals with ASD and 26 healthy controls were obtained from the Autism Brain Imaging Data Exchange (ABIDE) database. The DPARSF (data processing assistant for resting-state fMRI) toolbox was used for resting-state functional image processing, and features related to functional connections were extracted from these images. Then, the extracted features from both groups were compared using an Independent Two-Sample T Test, and the features with significant differences between the two groups were identified. Compared with healthy controls, individuals with ASD showed hyper-connectivity in the frontal lobe, anterior cingulum, parahippocampal, left precuneus, angular, caudate, superior temporal, and left pallidum, as well as hypo-connectivity in the precentral, left superior frontal, left middle orbitofrontal, right amygdala, and left posterior cingulum. Our findings show that abnormal functional connectivity exists in patients with ASD. This study makes an important advancement in our understanding of the abnormal neurocircuits causing autism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Croen LA, et al. The changing prevalence of autism in California. J Autism Dev Disord. 2002;32(3):207–15.

    Article  PubMed  Google Scholar 

  2. Asuero AG, Sayago A, González A. The correlation coefficient: an overview. Crit Rev Anal Chem. 2006;36(1):41–59.

    Article  CAS  Google Scholar 

  3. Faraj R, Zare H. Evaluation of white matter tracts in autistic individuals: a review of diffusion tensor imaging studies. SSU J. 2021;29(3):3539–55.

    Google Scholar 

  4. Correa N, Adalı T, Calhoun VD. Performance of blind source separation algorithms for fMRI analysis using a group ICA method. Magn Reson Imag. 2007;25(5):684–94.

    Article  Google Scholar 

  5. Villalobos ME, et al. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. Neuroimage. 2005;25(3):916–25.

    Article  PubMed  Google Scholar 

  6. Welchew DE, et al. Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome. Biol Psychiat. 2005;57(9):991–8.

    Article  PubMed  Google Scholar 

  7. Kana RK, et al. Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain. 2006;129(9):2484–93.

    Article  PubMed  Google Scholar 

  8. Just MA, et al. Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007;17(4):951–61.

    Article  PubMed  Google Scholar 

  9. Kleinhans NM, et al. Abnormal functional connectivity in autism spectrum disorders during face processing. Brain. 2008;131(4):1000–12.

    Article  PubMed  Google Scholar 

  10. Koshino H, et al. fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cereb Cortex. 2008;18(2):289–300.

    Article  PubMed  Google Scholar 

  11. Mizuno A, et al. Partially enhanced thalamocortical functional connectivity in autism. Brain Res. 2006;1104(1):160–74.

    Article  CAS  PubMed  Google Scholar 

  12. Turner S, et al. Heritability of post-mixing aggressiveness in grower-stage pigs and its relationship with production traits. Anim Sci. 2006;82(5):615–20.

    Article  Google Scholar 

  13. Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. Neuroimage. 2007;37(4):1083–90.

    Article  PubMed  Google Scholar 

  14. Just MA, et al. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain. 2004;127(8):1811–21.

    Article  PubMed  Google Scholar 

  15. Cherkassky VL, et al. Functional connectivity in a baseline resting-state network in autism. NeuroReport. 2006;17(16):1687–90.

    Article  PubMed  Google Scholar 

  16. Kennedy DP, Courchesne E. The intrinsic functional organization of the brain is altered in autism. Neuroimage. 2008;39(4):1877–85.

    Article  PubMed  Google Scholar 

  17. Monk CS, et al. Neural circuitry of emotional face processing in autism spectrum disorders. J Psychiat Neurosci JPN. 2010;35(2):105.

    Article  Google Scholar 

  18. Weng S-J, et al. Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Res. 2010;1313:202–14.

    Article  CAS  PubMed  Google Scholar 

  19. Assaf M, et al. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage. 2010;53(1):247–56.

    Article  PubMed  Google Scholar 

  20. Dinstein I, et al. Disrupted neural synchronization in toddlers with autism. Neuron. 2011;70(6):1218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weng SJ, et al. Neural activation to emotional faces in adolescents with autism spectrum disorders. J Child Psychol Psychiatry. 2011;52(3):296–305.

    Article  PubMed  Google Scholar 

  22. von dem Hagen EA, et al. Reduced functional connectivity within and between ‘social’ resting state networks in autism spectrum conditions. Soc Cogn Affect Neurosci. 2013;8(6):694–701.

    Article  Google Scholar 

  23. Itahashi T, et al. Altered network topologies and hub organization in adults with autism: a resting-state fMRI study. PLoS ONE. 2014;9(4):e94115.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Alaerts K, Swinnen SP, Wenderoth N. Sex differences in autism: a resting-state fMRI investigation of functional brain connectivity in males and females. Soc Cogn Affect Neurosci. 2016;11(6):1002–16.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rudie JD, et al. Altered functional and structural brain network organization in autism. NeuroImage Clin. 2013;2:79–94.

    Article  Google Scholar 

  26. Hernandez LM, et al. Neural signatures of autism spectrum disorders: insights into brain network dynamics. Neuropsychopharmacology. 2015;40(1):171–89.

    Article  PubMed  Google Scholar 

  27. Maximo JO, Cadena EJ, Kana RK. The implications of brain connectivity in the neuropsychology of autism. Neuropsychol Rev. 2014;24(1):16–31.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Washington SD, et al. Dysmaturation of the default mode network in autism. Hum Brain Mapp. 2014;35(4):1284–96.

    Article  PubMed  Google Scholar 

  29. Yan L, et al. Physiological origin of low-frequency drift in blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). Magn Res Med Off J Intern Soc Magn Res Med. 2009;61(4):819–27.

    Article  Google Scholar 

  30. Stanley ML, et al. Defining nodes in complex brain networks. Front Comput Neurosci. 2013;7:169.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Redcay E, et al. Intrinsic functional network organization in high-functioning adolescents with autism spectrum disorder. Front Hum Neurosci. 2013;7:573.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Müller R-A, et al. Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cereb Cortex. 2011;21(10):2233–43.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Alaerts K, et al. Age-related changes in intrinsic function of the superior temporal sulcus in autism spectrum disorders. Soc Cogn Affect Neurosci. 2015;10(10):1413–23.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cheng W, et al. Autism: reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self. Brain. 2015;138(5):1382–93.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hahamy A, Behrmann M, Malach R. The idiosyncratic brain: distortion of spontaneous connectivity patterns in autism spectrum disorder. Nat Neurosci. 2015;18(2):302–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ha S, et al. Characteristics of brains in autism spectrum disorder: structure, function and connectivity across the lifespan. Exp Neurobiol. 2015;24(4):273.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Monk CS, et al. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage. 2009;47(2):764–72.

    Article  PubMed  Google Scholar 

  38. Wiggins JL, et al. Using a self-organizing map algorithm to detect age-related changes in functional connectivity during rest in autism spectrum disorders. Brain Res. 2011;1380:187–97.

    Article  CAS  PubMed  Google Scholar 

  39. Gotts SJ, et al. Fractionation of social brain circuits in autism spectrum disorders. Brain. 2012;135(9):2711–25.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sadeghi M, et al. Screening of autism based on task-free fmri using graph theoretical approach. Psychiat Res Neuroimag. 2017;263:48–56.

    Article  Google Scholar 

  41. Ibrahim K, et al. Reduced amygdala–prefrontal functional connectivity in children with autism spectrum disorder and co-occurring disruptive behavior. Biolog Psychiat Cogn Neurosci Neuroimag. 2019;4(12):1031–41.

    Google Scholar 

  42. Guo X, et al. Decreased amygdala functional connectivity in adolescents with autism: a resting-state fMRI study. Psychiat Res Neuroimag. 2016;257:47–56.

    Article  Google Scholar 

  43. Barad M, Gean P-W, Lutz B. The role of the amygdala in the extinction of conditioned fear. Biol Psychiat. 2006;60(4):322–8.

    Article  PubMed  Google Scholar 

  44. Courchesne E, Pierce K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol. 2005;15(2):225–30.

    Article  CAS  PubMed  Google Scholar 

  45. Keown CL, et al. Local functional overconnectivity in posterior brain regions is associated with symptom severity in autism spectrum disorders. Cell Rep. 2013;5(3):567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cerliani L, et al. Increased functional connectivity between subcortical and cortical resting-state networks in autism spectrum disorder. JAMA Psychiat. 2015;72(8):767–77.

    Article  Google Scholar 

  47. Chien HY, et al. Hyperconnectivity of the right posterior temporo-parietal junction predicts social difficulties in boys with autism spectrum disorder. Autism Res. 2015;8(4):427–41.

    Article  PubMed  Google Scholar 

  48. Delmonte S, et al. Functional and structural connectivity of frontostriatal circuitry in Autism spectrum disorder. Front Hum Neurosci. 2013;7:430.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain. 1995;118(1):279–306.

    Article  PubMed  Google Scholar 

  50. Frey S, et al. Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J Neurosci. 2008;28(45):11435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Insel TR. Toward a neuroanatomy of obsessive-compulsive disorder. Archives of general psychiatry. 1992 Sep 1;49(9):739–44.

  52. O’Dwyer L, et al. Decreased left caudate volume is associated with increased severity of autistic-like symptoms in a cohort of ADHD patients and their unaffected siblings. PLoS ONE. 2016;11(11):e0165620.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Khadem-Reza ZK, Zare H. Automatic detection of autism spectrum disorder (ASD) in children using structural magnetic resonance imaging with machine vision system. Middle East Curr Psychiat. 2022;29(1):1–7.

    Article  Google Scholar 

  54. Khadem-Reza ZK, Zare H. Evaluation of brain structure abnormalities in children with autism spectrum disorder (ASD) using structural magnetic resonance imaging. Egypt J Neurol Psychiat Neurosurg. 2022;58(1):1–4.

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted using the MSc. thesis of Medical Physics. The authors would like to thank the Research Deputy of MUMS for the financial support of this project (No. 980858). Ethics code: IR.MUMS.MEDICAL.REC.1398.717)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoda Zare.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandan Khadem-Reza, Z., Shahram, M.A. & Zare, H. Altered resting-state functional connectivity of the brain in children with autism spectrum disorder. Radiol Phys Technol 16, 284–291 (2023). https://doi.org/10.1007/s12194-023-00717-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00717-2

Keywords

Navigation