Skip to main content

Advertisement

Log in

Investigation of the nuclear radiation interaction parameters of selected polymers for radiation therapy and dosimetry

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The mass attenuation coefficient (MAC), effective atomic number (Zeff), equivalent atomic number (Zeq), fast neutron removal cross-section (FNRCS), energy absorption buildup factor (EABF), mass-energy absorption coefficient (MenAC), relative kerma, and computed tomography (CT) numbers were calculated for the alginates, bisphenol A-glycidyl methacrylate (Bis-GMA), chitin, hyaluronic acid, polycaprolactone (PCL), polyether ether ketone (PEEK), polyethylene glycol (PEG), polyglycolide (PGA), polylactic acid (PLA), poly lacto-co-glycolic acid (PLGA), poly methyl methacrylate (PMMA), poly vinyl alcohol (PVA), polyvinylpyrrolidone (PVP), triethylene glycol dimethacrylate (TEGDMA), and urethane dimethacrylate (UDMA) polymers using the Phy-X/PSD and Py-MLBUF software. The total stopping power (TSP) of electrons, protons, and alpha particles was calculated for the selected polymers using the ESTAR, PSTAR, and ASTAR programs. The effective atomic number for absorption and charged particle (electron, proton, alpha, and carbon ion) interactions were estimated for the selected polymers using Phy-X/ZeXTRa software. The FNRCS values of Bis-GMA, PCL, PEG, PMMA, and PVP were similar to those of the human tissues. For the selected polymers, the Zeff values for electron, proton, alpha, and carbon ion interactions of PCL, PEG, PLGA, and PVA were similar to those of human tissues, except for the cortical bone, across the entire energy range. These results are expected to assist in selecting suitable polymers as tissue-equivalent materials in the desired energy range for photon, neutron, and charged-particle interactions. This study is expected to be useful for radiation therapy and dosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

ASTAR:

Stopping power and range tables for alpha ions

Bis-GMA:

Bisphenol A-glycidyl methacrylate

CT:

Computed tomography

EABF:

Energy absorption buildup factor

ESTAR:

Stopping power and range tables for electrons

FNRCS:

Fast neutron removal cross-section

MAC:

Mass attenuation coefficient

MenAC:

Mass energy absorption coefficient

PCL:

Polycaprolactone

PEEK:

Polyether ether ketone

PEG:

Polyethylene glycol

PGA:

Polyglycolide

Phy-X/PSD:

Photon shielding dosimetry

Phy-X/ZeXRTa:

ZEff of materials for X-type radiation attenuation

PLA:

Polylactic acid

PLGA:

Poly lacto-co-glycolic acid

PMMA:

Poly methyl methacrylate

PSTAR:

Stopping power and range tables for protons

PVA:

Poly vinyl alcohol

PVP:

Polyvinylpyrrolidone

Py-MLBUF:

Python-multilayer buildup factor

TEGDMA:

Triethylene glycol dimethacrylate

UDMA:

Urethane dimethacrylate

TSP:

Total stopping power

Z eff :

Effective atomic number

Z eq :

Equivalent atomic number

Z PEA :

Effective atomic number for photon energy absorption

References

  1. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krishnakumar S, Senthilvelan T. Polymer composites in dentistry and orthopedic applications-a review. Mater Today Proc. 2021;46:9707–13.

    Article  CAS  Google Scholar 

  3. Wan ACA, Tai BCU. CHITIN—a promising biomaterial for tissue engineering and stem cell technologies. Biotechnol Adv. 2013;31:1776–85.

    Article  CAS  PubMed  Google Scholar 

  4. Zhu Z, Wang Y-M, Yang J, Luo X-S. Hyaluronic acid: a versatile biomaterial in tissue engineering. Plast Aesthetic Res. 2017;4:219.

    Article  Google Scholar 

  5. Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S. PCL-based composite scaffold matrices for tissue engineering applications. Mol Biotechnol. 2018;60:506–32. https://doi.org/10.1007/s12033-018-0084-5.

    Article  CAS  PubMed  Google Scholar 

  6. Wang J-Z, You M-L, Ding Z-Q, Ye W-B. A review of emerging bone tissue engineering via PEG conjugated biodegradable amphiphilic copolymers. Mater Sci Eng C. 2019;97:1021–35.

    Article  CAS  Google Scholar 

  7. Benatti ACB, Pattaro AF, Rodrigues AA, Xavier MV, Kaasi A, Barbosa MIR, et al. Chapter 4 - Bioreabsorbable polymers for tissue engineering: PLA, PGA, and their copolymers. In: Holban A-M, Grumezescu AMBT-M for BE, editors. Materials for Biomedical Engineering. Elsevier; 2019. p. 83–116. https://doi.org/10.1016/B978-0-12-816901-8.00004-3

  8. Donate R, Monzón M, Alemán-Domínguez ME. Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties. E-Polymers. 2020;20:571–99. https://doi.org/10.1515/epoly-2020-0046.

    Article  CAS  Google Scholar 

  9. Zhao D, Zhu T, Li J, Cui L, Zhang Z, Zhuang X, et al. Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Bioact Mater. 2021;6:346–60.

    Article  CAS  PubMed  Google Scholar 

  10. Zafar MS. Prosthodontic applications of polymethyl methacrylate (PMMA): an update. Polymers. 2020. https://doi.org/10.3390/polym12102299.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kumar A, Han SS. PVA-based hydrogels for tissue engineering: a review. Int J Polym Mater Polym Biomater. 2017;66:159–82. https://doi.org/10.1080/00914037.2016.1190930.

    Article  CAS  Google Scholar 

  12. Kadambi P, Luniya P, Dhatrak P. Current advancements in polymer/polymer matrix composites for dental implants: a systematic review. Mater Today Proc. 2021;46:740–5.

    Article  CAS  Google Scholar 

  13. Teodorescu M, Bercea M, Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: perspectives and challenges. Biotechnol Adv. 2019;37:109–31.

    Article  CAS  PubMed  Google Scholar 

  14. White DR, Peaple LHJ, Crosby TJ. Measured attenuation coefficients at low photon energies (9.88–59.32 keV) for 44 materials and tissues. Radiat Res. 1980;84:239–52.

    Article  CAS  PubMed  Google Scholar 

  15. Islam S, Mahmoud KA, Sayyed MI, Alim B, Rahman MM, Mollah AS. Study on the radiation attenuation properties of locally available bees-wax as a tissue equivalent bolus material in radiotherapy. Radiat Phys Chem. 2020;172:108559.

    Article  CAS  Google Scholar 

  16. Kadri O, Alfuraih A. Photon energy absorption and exposure buildup factors for deep penetration in human tissues. Nucl Sci Tech. 2019;30:176. https://doi.org/10.1007/s41365-019-0701-4.

    Article  CAS  Google Scholar 

  17. Kargar Shaker Langaroodi R, Abtahi SMM, Akbari ME. Investigation of the radiological properties of various phantoms for their application in low energy X-rays dosimetry. Radiat Phys Chem. 2019;157:33–9.

    Article  CAS  Google Scholar 

  18. Mann KS, Kurudirek M, Sidhu GS. Verification of dosimetric materials to be used as tissue-substitutes in radiological diagnosis. Appl Radiat Isot. 2012;70:681–91.

    Article  CAS  PubMed  Google Scholar 

  19. Saleh HH, Sharaf JM, Alkhateeb SB, Hamideen MS. Studies on equivalent atomic number and photon buildup factors for some tissues and phantom materials. Radiat Phys Chem. 2019;165:108388.

    Article  CAS  Google Scholar 

  20. Singh VP, Badiger NM, Vega-Carrillo HR. Neutron kerma factors and water equivalence of some tissue substitutes. Appl Radiat Isot. 2015;103:115–9.

    Article  CAS  PubMed  Google Scholar 

  21. Singh VP, Badiger NM, Kucuk N. Assessment of methods for estimation of effective atomic numbers of common human organ and tissue substitutes: waxes, plastics and polymers. Radioprotection. 2014;49:115–21. https://doi.org/10.1051/radiopro/2013090.

    Article  CAS  Google Scholar 

  22. Kamal I, Karim MKA, Harun HH, Abdul Razak HR, Jian LY, Chyi JLY, et al. Evaluation of radiation attenuation properties on a various composition of polydimethylsiloxane (PDMS) for fabrication of kidney phantom. Radiat Phys Chem. 2021;189:109661.

    Article  CAS  Google Scholar 

  23. Prabhu S, Bharadwaj DY, Podder R, Bubbly SG, Gudennavar SB. Natural polymer-based hydrogels as prospective tissue equivalent materials for radiation therapy and dosimetry. Phys Eng Sci Med. 2021;44:1107–20. https://doi.org/10.1007/s13246-021-01047-6.

    Article  PubMed  Google Scholar 

  24. Şakar E, Özpolat ÖF, Alım B, Sayyed MI, Kurudirek M. Phy-X / PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat Phys Chem. 2020;166:108496.

    Article  Google Scholar 

  25. Mann KS, Mann SS. Py-MLBUF: development of an online-platform for gamma-ray shielding calculations and investigations. Ann Nucl Energy. 2021;150:107845.

    Article  CAS  Google Scholar 

  26. Berger MJ, Coursey JS, Zucker MA, Chang J. ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (version 1.2.3). Natl Inst Stand Technol. 2005. http://www.nist.gov/pml/data/star/#.V14l015QxOM.mendeley. Accessed 13 June 2022

  27. Özpolat ÖF, Alım B, Şakar E, Büyükyıldız M, Kurudirek M. Phy-X/ZeXTRa: a software for robust calculation of effective atomic numbers for photon, electron, proton, alpha particle, and carbon ion interactions. Radiat Environ Biophys. 2020;59:321–9. https://doi.org/10.1007/s00411-019-00829-7.

    Article  CAS  PubMed  Google Scholar 

  28. Hiremath GB, Hosamani MM, Vinayak A, Patil PN, Singh VP, Ayachit NH, et al. Investigation of gamma ray, electron, and neutron interaction parameters of some topological insulating materials. Radiat Eff Defects Solids. 2022. https://doi.org/10.1080/10420150.2022.2133714.

    Article  Google Scholar 

  29. Hosamani MM, Vinayak A, Mangeshkar S, Malode S, Bhajantri S, Hegde V, et al. Determination of effective atomic number of multifunctional materials using backscattered beta particles—a novel method. Spectrosc Lett Taylor Francis. 2020;53:132–9. https://doi.org/10.1080/00387010.2019.1707228.

    Article  CAS  Google Scholar 

  30. Kolavekar SB, Hiremath GB, Patil PN, Badiger NM, Ayachit NH. Investigation of gamma-ray shielding parameters of bismuth phospho-tellurite glasses doped with varying Sm2O3. Heliyon. 2022. https://doi.org/10.1016/j.heliyon.2022.e11788.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hanamar K, Hiremath GB, Hegde BG, Ayachit NH, Badiger NM. Effect of the samarium on the mechanical and radiation shielding capabilities of lead-free zinc-borate-lithium glasses. Optik. 2023;273:170397. https://doi.org/10.1016/j.ijleo.2022.170397

  32. Singh VP, Medhat ME, Badiger NM. Photon energy absorption coefficients for nuclear track detectors using Geant4 Monte Carlo simulation. Radiat Phys Chem. 2015;106:83–7.

    Article  CAS  Google Scholar 

  33. Srinivasan K, Samuel EJJ. Effective atomic number and photon buildup factor of bismuth doped tissue for photon and particles beam interaction. Polish J Med Phys Eng. 2022;28:37–51. https://doi.org/10.2478/pjmpe-2022-0005.

    Article  Google Scholar 

  34. Kurudirek M, Özdemir Y. Energy absorption and exposure buildup factors for some polymers and tissue substitute materials: photon energy, penetration depth and chemical composition dependence. J Radiol Prot IOP Publish. 2011;31:117–28. https://doi.org/10.1088/0952-4746/31/1/008.

    Article  CAS  Google Scholar 

  35. Singh I, Singh B, Sandhu BS, Sabharwal AD. Investigations of various gamma radiation interaction parameters of human tissues and their tissue substitute materials for dosimetric applications. Radiat Phys Chem. 2021;189:109742.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NMB thanks the KLE Technological University, Hubballi, India, for funding the capacity-building projects, and for appointing GBH has a research associate in the project.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: GBH; methodology: GBH, NMB; formal analysis and Investigation: GBH; writing—original draft: GBH; writing—review and editing: NMB, NHA, VPS; resources: NHA; validation: VPS; supervision: NMB.

Corresponding author

Correspondence to N. M. Badiger.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies involving human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiremath, G.B., Singh, V.P., Ayachit, N.H. et al. Investigation of the nuclear radiation interaction parameters of selected polymers for radiation therapy and dosimetry. Radiol Phys Technol 16, 168–185 (2023). https://doi.org/10.1007/s12194-023-00704-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00704-7

Keywords

Navigation