Skip to main content
Log in

Estimation of focal and extra-focal radiation profiles based on Gaussian modeling in medical linear accelerators

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The X-ray source or focal radiation is one of the factors that can degrade the conformal field edge in stereotactic body radiotherapy. For that reason, it is very important to estimate the total focal radiation profiles of linear accelerators, which consists of X-ray focal-spot radiation and extra-focal radiation profiles. Our purpose in this study was to propose an experimental method for estimating the focal-spot and extra-focal radiation profiles of linear accelerators based on triple Gaussian functions. We measured the total X-ray focal radiation profiles of the accelerators by moving a slit in conjunction with a photon field p-type silicon diode. The slit width was changed so that the extra-focal radiation could be optimally included in the total focal radiation. The total focal radiation profiles of an accelerator at 4-MV and 10-MV energies were approximated with a combination of triple Gaussian functions, which correspond to the focal-spot radiation, extra-focal radiation, and radiation transmitted through the slit assembly. As a result, the ratios of the Gaussian peak value of the extra-focal radiation to that of the focal spot for 4 and 10 MV were 0.077 and 0.159, respectively. The peak widths of the focal-spot and extra-focal radiation profiles were 0.57 and 25.0 mm for 4 MV, respectively, and 0.60 and 22.0 mm for 10 MV, respectively. We concluded that the proposed focal radiation profile model based on the triple Gaussian functions may be feasible for estimating the X-ray focal-spot and extra-focal radiation profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Martin A, Gaya A. Stereotactic body radiotherapy: a review. Clin Oncol. 2010;22(3):157–72.

    Article  CAS  Google Scholar 

  2. Nagata Y, Matsuo Y, Takayama K, Norihisa Y, Mizowaki T, Mitsumori M, et al. Current status of stereotactic body radiotherapy for lung cancer. Int J Clin Oncol. 2007;12(1):3–7.

    Article  PubMed  Google Scholar 

  3. Wang LLW, Leszczynski K. Estimation of the focal size and shape for a medical linear accelerator by Monte Carlo simulation. Med Phys. 2007;34(2):485–8.

    Article  PubMed  Google Scholar 

  4. Mackie TR, Scrimger JW, Battista JJ. A convolution method of calculating dose for 15-MV X rays. Med Phys. 1985;12(2):188–96.

    Article  PubMed  CAS  Google Scholar 

  5. Boyer AL, Mok EC. Calculation of photon dose distributions in an inhomogeneous medium using convolutions. Med Phys. 1986;13:503–9.

    Article  PubMed  CAS  Google Scholar 

  6. Ahnesjö A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys. 1989;16(4):577–92.

    Article  PubMed  Google Scholar 

  7. Liu HH, Mackie TR, McCullough EC. Correcting kernel tilting and hardening in convolution/superposition dose calculations for clinical divergent and polychromatic photon beams. Med Phys. 1997;24(11):1729–41.

    Article  PubMed  CAS  Google Scholar 

  8. Battista JJ, Sharpe MB. True three-dimensional dose computations for megavoltage X-ray therapy: a role for the superposition principle. Australas Phys Eng Sci Med. 1992;15(4):159–78.

    PubMed  CAS  Google Scholar 

  9. Jaffray DA, Battista JJ, Fenster A, Munro P. X-ray source of medical liner accelerators: focal and extra-focal radiation. Med Phys. 1993;20(5):1417–27.

    Article  PubMed  CAS  Google Scholar 

  10. Sharpe MB, Jaffray DA, Battista JJ, Munro P. Extrafocal radiation: a unified approach to the prediction of beam penumbra and output factors for megavoltage X-ray beams. Med Phys. 1995;22(12):2065–74.

    Article  PubMed  CAS  Google Scholar 

  11. Sham E, Seuntjens J, Devic S, Podgorsak EB. Influence of focal spot on characteristics of very small diameter radiosurgical beams. Med Phys. 2008;35(7):3317–30.

    Article  PubMed  Google Scholar 

  12. Ahnesjö A, Knöös T. Application of the convolution method for calculation of output factors for therapy photon beams. Med Phys. 1992;19(2):295–301.

    Article  PubMed  Google Scholar 

  13. Ahnesjö A. Analytic modeling of photon scatter from flattening filters in photon therapy beams. Med Phys. 1994;21(8):1227–35.

    Article  PubMed  Google Scholar 

  14. Zhu TC, Bjarngard BE. The head-scatter factor for small field sizes. Med Phys. 1994;21(1):65–8.

    Article  PubMed  CAS  Google Scholar 

  15. Das IJ, Ding GX, Ahnesjö A. Small fields : nonequilibrium radiation dosimetry. Med Phys. 2008;35(1):206–15.

    Article  PubMed  Google Scholar 

  16. Scott AJD, Nahum AE, Fenwick JD. Monte Carlo modeling of small photon fields: quantifying the impact of focal spot size on source occlusion and output factors, and exploring mini phantom design for small-field measurements. Med Phys. 2009;36(7):3132–44.

    Article  PubMed  Google Scholar 

  17. Chaney EL, Cullip TJ, Gabriel TA. A Monte Carlo study of accelerator head scatter. Med Phys. 1994;21(9):1383–90.

    Article  PubMed  CAS  Google Scholar 

  18. Mohan R, Chui C, Lidofsky L. Energy and angular distributions of photons from medical linear accelerators. Med Phys. 1985;12(1):592–7.

    Article  PubMed  CAS  Google Scholar 

  19. DeLuca P, Jones D, Gahbauer R. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). ICRU report 83. 2010;10(1):60–6

  20. Sawant A, Antonuk L, El-Mohri Y. Slit design for efficient and accurate MTF measurement at megavoltage X-ray energies. Med Phys. 2007;34(5):1535–45.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Kazuharu Nishitani and Mr. Tokuhiro Hayashi for assistance in measurements of the total focal radiation profile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetaka Arimura.

About this article

Cite this article

Anai, S., Arimura, H., Nakamura, K. et al. Estimation of focal and extra-focal radiation profiles based on Gaussian modeling in medical linear accelerators. Radiol Phys Technol 4, 173–179 (2011). https://doi.org/10.1007/s12194-011-0118-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-011-0118-1

Keywords

Navigation