Skip to main content
Log in

Extracellular vesicle-mediated immunoregulation in cancer

  • Progress in Hematology
  • Immunotherapy: Cancer immunotherapy development: From a different perspective
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) have emerged as immunomodulatory regulators during tumor progression. These small vesicles encapsulate a variety of molecules, including DNA, RNA, and proteins. When EVs come in contact with recipient cells, the EVs transmit various physiological characteristics; for example, proteins on the surface of EVs act as ligands. Immune checkpoint blockade targeting cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) has shown promise in a subset of cancer patients. PD-L1 on EVs acts as a key immunomodulator. Suppression of EV secretion enhances the efficacy of immunotherapy using immune checkpoint blockade antibodies. In addition to immune checkpoint blockade therapy, chimeric antigen receptor T (CAR-T) cell therapy has also been used to successfully eliminate cancer cells. Interestingly, CAR-T-cell-derived EVs express CAR on their surface. Compared with CAR-T cells, CAR-expressing EVs do not express PD1, so their antitumor effect cannot be weakened. In this review, we describe the current understanding of EVs in cancer immunity and summarize their crucial roles in immunomodulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest. 2015;125(9):3335–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. 2020;52(1):17–35.

    Article  CAS  PubMed  Google Scholar 

  3. Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 2021;18(1):9–34.

    Article  PubMed  Google Scholar 

  4. Chen F, Wang Y, Gao J, Saeed M, Li T, Wang W, et al. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials. 2021;270: 120709.

    Article  CAS  PubMed  Google Scholar 

  5. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaynor N, Crown J, Collins DM. Immune checkpoint inhibitors: Key trials and an emerging role in breast cancer. Semin Cancer Biol. 2022;79:44–57.

    Article  CAS  PubMed  Google Scholar 

  7. Chou C, Zhang X, Krishna C, Nixon BG, Dadi S, Capistrano KJ, et al. Programme of self-reactive innate-like T cell-mediated cancer immunity. Nature. 2022;605(7908):139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu Y, Yan H, Gu H, Zhang E, He J, Cao W, et al. Myeloma-derived IL-32γ induced PD-L1 expression in macrophages facilitates immune escape via the PFKFB3-JAK1 axis. Oncoimmunology. 2022;11(1):2057837.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wagner J, Wickman E, DeRenzo C, Gottschalk S. CAR T Cell Therapy for solid tumors: bright future or dark reality? Mol Ther. 2020;28(11):2320–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Delgoffe GM, Xu C, Mackall CL, Green MR, Gottschalk S, Speiser DE, et al. The role of exhaustion in CAR T cell therapy. Cancer Cell. 2021;39(7):885–8.

    Article  CAS  PubMed  Google Scholar 

  11. Teoh PJ, Chng WJ. CAR T-cell therapy in multiple myeloma: more room for improvement. Blood Cancer J. 2021;11(4):84.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dai H, Wu Z, Jia H, Tong C, Guo Y, Ti D, et al. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J Hematol Oncol. 2020;13(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. Blood Rev. 2019;34:45–55.

    Article  CAS  PubMed  Google Scholar 

  14. Ying Z, Huang XF, Xiang X, Liu Y, Kang X, Song Y, et al. A safe and potent anti-CD19 CAR T cell therapy. Nat Med. 2019;25(6):947–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu G, Rui W, Zhao X, Lin X. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol Immunol. 2021;18(5):1085–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boulch M, Cazaux M, Loe-Mie Y, Thibaut R, Corre B, Lemaître F, et al. A cross-talk between CAR T cell subsets and the tumor microenvironment is essential for sustained cytotoxic activity. Sci Immunol. 2021. https://doi.org/10.1126/sciimmunol.abd4344.

    Article  PubMed  Google Scholar 

  17. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79(18):4557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moghimi B, Muthugounder S, Jambon S, Tibbetts R, Hung L, Bassiri H, et al. Preclinical assessment of the efficacy and specificity of GD2-B7H3 SynNotch CAR-T in metastatic neuroblastoma. Nat Commun. 2021;12(1):511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the misev2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kosaka N, Kogure A, Yamamoto T, Urabe F, Usuba W, Prieto-Vila M, et al. Exploiting the message from cancer: the diagnostic value of extracellular vesicles for clinical applications. Exp Mol Med. 2019;51(3):1–9.

    Article  CAS  PubMed  Google Scholar 

  21. Cai Q, He B, Wang S, Fletcher S, Niu D, Mitter N, et al. Message in a bubble: shuttling small RNAS and proteins between cells and interacting organisms using extracellular vesicles. Annu Rev Plant Biol. 2021;72:497–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang P, Peng Y, Feng Y, Xu Z, Feng P, Cao J, et al. Immune cell-derived extracellular vesicles - new strategies in cancer immunotherapy. Front Immunol. 2021;12: 771551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cocks A, Martinez-Rodriguez V, Del Vecchio F, Schukking M, Broseghini E, Giannakopoulos S, et al. Diverse roles of EV-RNA in cancer progression. Semin Cancer Biol. 2021;75:127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560(7718):382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morrissey SM, Yan J. Exosomal PD-L1: roles in tumor progression and immunotherapy. Trends Cancer. 2020;6(7):550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haderk F, Schulz R, Iskar M, Cid LL, Worst T, Willmund KV, et al. Tumor-derived exosomes modulate PD-L1 expression in monocytes. Sci Immunol. 2017. https://doi.org/10.1126/sciimmunol.aah5509.

    Article  PubMed  Google Scholar 

  27. Gabrusiewicz K, Li X, Wei J, Hashimoto Y, Marisetty AL, Ott M, et al. Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology. 2018;7(4): e1412909.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25(4):501–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bai M, Li J, Yang H, Zhang H, Zhou Z, Deng T, et al. miR-135b delivered by gastric tumor exosomes inhibits foxo1 expression in endothelial cells and promotes angiogenesis. Mol Ther. 2019;27(10):1772–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9(1):5395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou C, Wei W, Ma J, Yang Y, Liang L, Zhang Y, et al. Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels. Mol Ther. 2021;29(4):1512–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou C, Zhang Y, Yan R, Huang L, Mellor AL, Yang Y, et al. Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment. Cell Death Differ. 2021;28(2):715–29.

    Article  CAS  PubMed  Google Scholar 

  33. Yin X, Zeng W, Wu B, Wang L, Wang Z, Tian H, et al. PPARα inhibition overcomes tumor-derived exosomal lipid-induced dendritic cell dysfunction. Cell Rep. 2020;33(3): 108278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao Y, Xu H, Li N, Wang H, Ma L, Chen S, et al. Renal cancer-derived exosomes induce tumor immune tolerance by MDSCs-mediated antigen-specific immunosuppression. Cell Commun Signal. 2020;18(1):106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest. 2010;120(2):457–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu H, Bowler N, Harshyne LA, Craig Hooper D, Krishn SR, Kurtoglu S, et al. Exosomal αvβ6 integrin is required for monocyte M2 polarization in prostate cancer. Matrix Biol. 2018;70:20–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li X, Lei Y, Wu M, Li N. Regulation of macrophage activation and polarization by HCC-derived exosomal lncRNA TUC339. Int J Mol Sci. 2018;19(10):2958.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Harshyne LA, Nasca BJ, Kenyon LC, Andrews DW, Hooper DC. Serum exosomes and cytokines promote a T-helper cell type 2 environment in the peripheral blood of glioblastoma patients. Neuro Oncol. 2016;18(2):206–15.

    Article  CAS  PubMed  Google Scholar 

  39. Hong CS, Sharma P, Yerneni SS, Simms P, Jackson EK, Whiteside TL, et al. Circulating exosomes carrying an immunosuppressive cargo interfere with cellular immunotherapy in acute myeloid leukemia. Sci Rep. 2017;7(1):14684.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Capello M, Vykoukal JV, Katayama H, Bantis LE, Wang H, Kundnani DL, et al. Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity. Nat Commun. 2019;10(1):254.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ye L, Zhang Q, Cheng Y, Chen X, Wang G, Shi M, et al. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1+ regulatory B cell expansion. J Immunother Cancer. 2018;6(1):145.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan J, et al. Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. J Exp Clin Cancer Res. 2019;38(1):310.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pu Y, Ji Q. Tumor-associated macrophages regulate PD-1/PD-L1 Immunosuppression. Front Immunol. 2022;13: 874589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20(1):131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dou D, Ren X, Han M, Xu X, Ge X, Gu Y, et al. Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer via the mir-92/pd-l1 pathway. Front Immunol. 2020;11:2026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Biswas S, Mandal G, Roy Chowdhury S, Purohit S, Payne KK, Anadon C, et al. Exosomes produced by mesenchymal stem cells drive differentiation of myeloid cells into immunosuppressive m2-polarized macrophages in breast cancer. J Immunol. 2019;203(12):3447–60.

    Article  CAS  PubMed  Google Scholar 

  47. Xunian Z, Kalluri R. Biology and therapeutic potential of mesenchymal stem cell-derived exosomes. Cancer Sci. 2020;111(9):3100–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mohammadi MR, Rodriguez SM, Luong JC, Li S, Cao R, Alshetaiwi H, et al. Exosome loaded immunomodulatory biomaterials alleviate local immune response in immunocompetent diabetic mice post islet xenotransplantation. Commun Biol. 2021;4(1):685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Saunderson SC, McLellan AD. Role of lymphocyte subsets in the immune response to primary B cell-derived exosomes. J Immunol. 2017;199(7):2225–35.

    Article  CAS  PubMed  Google Scholar 

  50. Théry C, Duban L, Segura E, Véron P, Lantz O, Amigorena S. Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol. 2002;3(12):1156–62.

    Article  PubMed  Google Scholar 

  51. Näslund TI, Gehrmann U, Qazi KR, Karlsson MC, Gabrielsson S. Dendritic cell-derived exosomes need to activate both T and B cells to induce antitumor immunity. J Immunol. 2013;190(6):2712–9.

    Article  PubMed  Google Scholar 

  52. Seo N, Shirakura Y, Tahara Y, Momose F, Harada N, Ikeda H, et al. Activated CD8+ T cell extracellular vesicles prevent tumour progression by targeting of lesional mesenchymal cells. Nat Commun. 2018;9(1):435.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Federici C, Shahaj E, Cecchetti S, Camerini S, Casella M, Iessi E, et al. Natural-killer-derived extracellular vesicles: immune sensors and interactors. Front Immunol. 2020;11:262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cai Z, Yang F, Yu L, Yu Z, Jiang L, Wang Q, et al. Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol. 2012;188(12):5954–61.

    Article  CAS  PubMed  Google Scholar 

  55. Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019;76(3):359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu-Monette ZY, Zhou J, Young KH. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood. 2018;131(1):68–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen C, Liang C, Wang S, Chio CL, Zhang Y, Zeng C, et al. Expression patterns of immune checkpoints in acute myeloid leukemia. J Hematol Oncol. 2020;13(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Prat A, Navarro A, Paré L, Reguart N, Galván P, Pascual T, et al. Immune-related gene expression profiling after pd-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 2017;77(13):3540–50.

    Article  CAS  PubMed  Google Scholar 

  59. Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal. 2012. https://doi.org/10.1126/scisignal.2002796.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fan Y, Che X, Qu J, Hou K, Wen T, Li Z, et al. Exosomal PD-L1 retains immunosuppressive activity and is associated with gastric cancer prognosis. Ann Surg Oncol. 2019;26(11):3745–55.

    Article  PubMed  Google Scholar 

  61. Li JW, Wei P, Guo Y, Shi D, Yu BH, Su YF, et al. Clinical significance of circulating exosomal PD-L1 and soluble PD-L1 in extranodal NK/T-cell lymphoma, nasal-type. Am J Cancer Res. 2020;10(12):4498–512.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin B, Tian T, Lu Y, Liu D, Huang M, Zhu L, et al. Tracing tumor-derived exosomal PD-l1 by dual-aptamer activated proximity-induced droplet digital PCR. Angew Chem Int Ed Engl. 2021;60(14):7582–6.

    Article  CAS  PubMed  Google Scholar 

  63. Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, et al. Suppression of exosomal pd-l1 induces systemic anti-tumor immunity and memory. Cell. 2019;177(2):414-427.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang F, Li Z, Zhang W, Li J, Hao S. Enhancing the anti-leukemia immunity of acute lymphocytic leukemia-derived exosome-based vaccine by downregulation of PD-L1 expression. Cancer Immunol Immunother. 2022. https://doi.org/10.1007/s00262-021-03138-5 (Epub ahead of print).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Calvo V, Izquierdo M. T Lymphocyte and CAR-T cell-derived extracellular vesicles and their applications in cancer therapy. Cells. 2022;11(5):790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tang XJ, Sun XY, Huang KM, Zhang L, Yang ZS, Zou DD, et al. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy. Oncotarget. 2015;6(42):44179–90.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fu W, Lei C, Liu S, Cui Y, Wang C, Qian K, et al. CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat Commun. 2019;10(1):4355.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Haque S, Vaiselbuh SR. CD19 chimeric antigen receptor-exosome targets cd19 positive b-lineage acute lymphocytic leukemia and induces cytotoxicity. Cancers (Basel). 2021;13(6):1401.

    Article  CAS  PubMed  Google Scholar 

  69. Yang P, Cao X, Cai H, Feng P, Chen X, Zhu Y, et al. The exosomes derived from CAR-T cell efficiently target mesothelin and reduce triple-negative breast cancer growth. Cell Immunol. 2021;360: 104262.

    Article  CAS  PubMed  Google Scholar 

  70. Johnson LR, Lee DY, Eacret JS, Ye D, June CH, Minn AJ. The immunostimulatory RNA RN7SL1 enables CAR-T cells to enhance autonomous and endogenous immune function. Cell. 2021;184(19):4981–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All figures are created with Biorender.com (25 April 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Ochiya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, T., Yamamoto, Y. & Ochiya, T. Extracellular vesicle-mediated immunoregulation in cancer. Int J Hematol 117, 640–646 (2023). https://doi.org/10.1007/s12185-022-03436-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-022-03436-3

Keywords

Navigation