Skip to main content

Advertisement

Log in

Expression of mitochondrial genes predicts survival in pediatric acute myeloid leukemia

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Deregulated mitochondrial metabolism and biogenesis have been studied in acute myeloid leukemia (AML); yet, the relevance of mitochondrial-encoded gene expression on AML outcomes is unknown. This study was conducted to assess clinical significance of expression of mitochondrial-encoded genes, namely ND3, SDHB, Cytochrome b, Cytochrome C, and ATP6, in pediatric AML. Pediatric AML patients from July 2013 to June 2016 were enrolled in this prospective study. Relative genes expression was determined using real-time PCR, and expressed as fold change. 123 AML patients were enrolled, median age 10 (range 0.7–18 years). ND3 gene expression was significantly increased in poor-risk cytogenetics (P = 0.03). In univariate analysis, high ND3 and ATP6 gene expression was significantly associated with inferior EFS (P = 0.01 and P = 0.04, respectively) and OS (P = 0.02 and P = 0.01, respectively), whereas, in multivariate analysis, ND3 gene expression emerged as the only independent prognostic factor for EFS and OS (P = 0.04 and P = 0.03). ND3 gene expression is a significant predictor of EFS and OS in pediatric AML, and should be evaluated as a potential biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wallace DC. Diseases of the mitochondrial DNA. Annu Rev Chem Biomol Eng. 1992;61:1175–212.

    CAS  Google Scholar 

  2. Grossman L. Mitochondrial DNA mutations and human disease. Environ Mutagen. 1995;25:30–7.

    Article  CAS  Google Scholar 

  3. Larsson NG, Luft R. Revolution in mitochondrial medicine. FEBS Lett. 1999;455:199–202.

    Article  CAS  PubMed  Google Scholar 

  4. Grossman L, Shoubridge E. Mitochondrial genetics and human disease. BioEssays. 1996;18:983–91.

    Article  CAS  PubMed  Google Scholar 

  5. Weiss H, Friedrich T, Hofhaus G, Preis D. The respiratory-chain NADH dehydrogenase (complex 1) of mitochondria. Eur J Biochem. 1991;197:563–76.

    Article  CAS  PubMed  Google Scholar 

  6. Hatefi Y. The mitochondrial phosphorylation system and oxidative phosphorylation. Annu Rev Biochem. 1985;54:1015–69.

    Article  CAS  PubMed  Google Scholar 

  7. Robinson BH. Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. Biochim Biophys Acta. 1998;1364:271–86.

    Article  CAS  PubMed  Google Scholar 

  8. Carew JS, Huang P. Mitochondrial defects in cancer. Mol Cancer. 2002;1:1–12.

    Article  Google Scholar 

  9. Fliss MS, Usadel H, Cobarello OL. Facile detection of mitochondrial DNA mutations in tumours and bodily fluids. Science. 2000;287:2017–9.

    Article  CAS  PubMed  Google Scholar 

  10. Bianchi MS, Bianchi NO, Bailliet G. Mitochondrial DNA mutations in normal and tumor tissues from breast cancer patients. Cytogenet Cell Genet. 1995;71:99–103.

    Article  CAS  PubMed  Google Scholar 

  11. Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet. 1998;20:291–3.

    Article  CAS  PubMed  Google Scholar 

  12. Horton TM, Petros JA, Heddi A, Shoffner J, Kaufman AE, Graham SD Jr, et al. Novel mitochondrial DNA deletion found in a renal cell carcinoma. Genes Chromosomes Cancer. 1996;15:95–101.

    Article  CAS  PubMed  Google Scholar 

  13. Luciakovak KS. Increased steady-state levels of several mitochondrial and nuclear gene transcripts in rat hepatoma with a low content of mitochondria. Eur J Biochem. 1992;205:1187–93.

    Article  Google Scholar 

  14. Tamura G, Nishizuka S, Maesawa C, Suzuki Y, Lwaya T, Sakata K, et al. Mutations in mitochondrial control region DNA in gastric tumours of Japanese patients. Eur J Cancer. 1999;35:316–9.

    Article  CAS  PubMed  Google Scholar 

  15. Clayton DA, Vinograd J. Circular dimer and catenate forms of mitochondrial DNA in human leukaemic leucocytes. Nature. 1967;216:652–7.

    Article  CAS  PubMed  Google Scholar 

  16. LaBiche RA, Yoshida M, Gallick GE, Irimura T, Robberson DL, Klostergaard J, et al. Gene expression and tumor cell escape from host effector mechanisms in murine large cell lymphoma. J Cell Biochem. 1988;36:393–403.

    Article  CAS  PubMed  Google Scholar 

  17. Sharp MGF, Adams SM, Walker RA, Brammar WJ, Varley JM. Differential expression of the mitochondrial gene cytochrome oxidase II in benign and malignant breast tissue. J Pathol. 1992;168:163–8.

    Article  CAS  PubMed  Google Scholar 

  18. Lu X, Walker T, Macmanus JP, Walker T, Macmanus JP, Seligy VL. Differentiation of HT-29 human colonic adenocarcinoma cells correlates with increased expression of mitochondrial RNA: effects of trehalose on cell growth and maturation differentiation of HT-29 human colonie adenocarcinoma cells correlates with increase. Cancer Res. 1992;37:18–25.

    Google Scholar 

  19. Reznik E, Miller ML, Şenbabaoğlu Y, Riaz N, Sarungbam J, Tickoo SK, et al. Mitochondrial DNA copy number variation across human cancers. ELife. 2016;5:1–20.

    Article  Google Scholar 

  20. Reznik ED, Wang Q, La K, Schultz N, Sander C. Mitochondrial respiratory gene expression is suppressed in many cancers. ELife. 2017;6:1–16.

    Article  Google Scholar 

  21. Schildgen V, Wulfert M, Gattermann N. Impaired mitochondrial gene transcription in myelodysplastic syndromes and acute myeloid leukemia with myelodysplasia-related changes. Exp Hematol. 2011;39:666–75.

    Article  CAS  PubMed  Google Scholar 

  22. Tyagi A, Pramanik R, Vishnubhatla S, Ali S, Bakhshi R, Chopra A, et al. Pattern of mitochondrial D-loop variations and their relation with mitochondrial encoded genes in pediatric acute myeloid leukemia. Mutat Res. 2018;810:13–8.

    Article  CAS  PubMed  Google Scholar 

  23. Shaffer LG, McGowan-Jordan J, Schmid M. An international system for human cytogenetic nomenclature (ISCN). Basel: Karger; 2013. p. 88–95.

    Google Scholar 

  24. Chopra A, Soni S, Pati H, Kumar D, Diwedi R, Verma D, et al. Nucleophosmin mutation analysis in acute myeloid leukaemia: immunohistochemistry as a surrogate for molecular techniques. Indian J Med Res. 2016;143:763–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sharawat SK, Raina V, Kumar L, Sharma A, Bakhshi R, Vishnubhatla S, et al. High fms-like tyrosine kinase-3 (FLT3) receptor surface expression predicts poor outcome in FLT3 internal tandem duplication (ITD) negative patients in adult acute myeloid leukaemia: a prospective pilot study from India. Indian J Med Res. 2016;143:S11–S16.

    PubMed  PubMed Central  Google Scholar 

  26. Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from international panel. Blood. 2017;129:424–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burnett AK, Russell NH, Hills RK, Kell J, Cavenagh J, Kjeldsen L, et al. A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction: results from the UK NCRI AML17 trial in 1206 patients. Blood. 2016;125:3878–86.

    Article  CAS  Google Scholar 

  28. Ahmad F, Mandava S, Das BR. Analysis of FLT3-ITD and FLT3-Asp835 mutations in de novo acute myeloid leukemia: evaluation of incidence, distribution pattern, correlation with cytogenetics and characterization of internal tandem duplication from Indian population. Cancer Investig. 2010;28:63–73.

    Article  CAS  Google Scholar 

  29. Wulfert M, Küpper AC, Tapprich C, Bottomley SS, Bowen D, Germing U, et al. Analysis of mitochondrial DNA in 104 patients with myelodysplastic syndromes. Exp Hematol. 2008;36:577–86.

    Article  CAS  PubMed  Google Scholar 

  30. Chen ML, Logan TD, Hochberg ML, Shelat SG, Yu X, Wilding GE, et al. Erythroid dysplasia, megaloblastic anemia, and impaired lymphopoiesis arising from mitochondrial dysfunction. Blood. 2009;114:4045–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sotgia F, Lisanti MP. Mitochondrial markers predict survival and progression in non-small cell lung cancer (NSCLC) patients: use as companion diagnostics. Oncotarget. 2017;8:68095–107.

    PubMed  PubMed Central  Google Scholar 

  32. Sotgia F, Fiorillo M, Lisanti MP. Mitochondrial markers predict recurrence, metastasis and tamoxifen-resistance in breast cancer patients: early detection of treatment failure with companion diagnostics. Oncotarget. 2017;8:68730–45.

    PubMed  PubMed Central  Google Scholar 

  33. Selvanayagam P, Rajaraman S. Detection of mitochondrial genome depletion by a novel cDNA in renal cell carcinoma. Lab Investig. 1996;74:592.

    CAS  PubMed  Google Scholar 

  34. Wong TWL, Yu HY, Kong SK, Fung KP, Kwok TT. The decrease of mitochondrial NADH dehydrogenase and drug induced apoptosis in doxorubicin resistant A431 cells. Life Sci. 2000;67:1111–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our nursing staff, data entry operator, patients and their parents who participated in the study. We also acknowledge the following funding agency 1. AIIMS, (Grant no. F.5-59/IRG/2010/RS) Intramural Grant.

Author information

Authors and Affiliations

Authors

Contributions

AT and SB designed the study; AT, RB, and AS contribute to acquisition and interpretation of data; SV was the statistician, analyzed and interpreted the results; AT, RP, and SB wrote the paper. All authors reviewed and gave the final approval for the paper.

Corresponding author

Correspondence to Sameer Bakhshi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Approval for the study was taken from the Institute Ethical Committee vide letter number: IEC/NP-336/2012.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, A., Pramanik, R., Bakhshi, R. et al. Expression of mitochondrial genes predicts survival in pediatric acute myeloid leukemia. Int J Hematol 110, 205–212 (2019). https://doi.org/10.1007/s12185-019-02666-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-019-02666-2

Keywords

Navigation