Skip to main content
Log in

An Overview of the Risks and Impact of Pre-exercise Supplements for Exercise Performance, Recovery, and Cardiovascular Health

  • Review
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Pre-workout supplements, usually referred to as dietary supplements, are very popular among consumers looking to improve their physical and athletic performance. Although use is broad, there is data lacking on the potential short- and long-term cardiac impact of these supplements. This review was undertaken to assess available information on the contemporary most used pre-workout supplement categories, their ergogenic effects to understand the rationale for use, their use in patients with CVD or those interested in CVD prevention or disease progression mitigation, and potential safety concerns in both younger and older people interested in augmentation of exercise performance and improved recovery times.

Recent Findings

The pre-workout supplement market in the USA is projected to increase to $26.8 billion by 2023 from its $14.2 billion value in 2022. It is important to note that the FDA does not currently regulate the safety, effectiveness, or labeling of these supplements; this puts the onus on the makers to provide accurate safety and use information, and this can lead to customer confusion. The effectiveness and safety of pre-workout supplement use amongst the CVD population or for CVD prevention are unclear despite the broad use and popularity of the most used products: antioxidants, caffeine, creatine, and nitrates. However, outside of antioxidant therapy, there are clear favorable differential impacts of these agents on exercise performance and potential heart health. There appears to be no benefit of use for exercise performance or CVD risk mitigation with antioxidants. Caffeine use can increase QTc intervals and exercise-related systolic and diastolic blood pressure that may augment risk in susceptible individuals; however, generalized use appears safe and improves exercise performance. Creatine use improves exercise performance and may have some disease-specific roles in the treatment of patients with CVD. To date, there are no significant harms identified with its use as a pre-workout supplement. Nitrate supplementation may exhibit cardioprotective effects, such as vasodilation and reduced oxidative stress, particularly when used for moderate-intensity exercise.

Summary

These mixed findings of benefits and risks with supplementation continue to support the need for adequately powered randomized prospective trials of pre-workout supplements to provide evidence of proper dosing, risks, and benefits in CVD patients and for CVD prevention and progression risk. Awareness needs to improve regarding the potential risks of exercise-induced QTc prolongation and blood pressure elevation that may put susceptible people at risk. However, the majority of the most common supplements do produce favorable ergogenic effects to support their use from an efficacy standpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Verified Market Research. Global pre-workout supplements market size by form (powder, capsule/tablets, ready to drink), By Distribution Channel (Online, Offline), By Geographic Scope And Forecast. 2023; https://www.verifiedmarketresearch.com/product/pre-workout-supplements-market/. Accessed Oct 1, 2023.

  2. (FDA) FDA. Facts about dietary supplements. https://www.fda.gov/news-events/rumor-control/facts-about-dietary-supplements2023. Accessed Oct 1, 2023.

  3. Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS, American Heart Association Council on E, Prevention Statistics C and Stroke Statistics S. 2023 Heart Disease and Stroke Statistics-2023 update: a report from the American Heart Association. Circulation. 2023;147:e93–621.

    Article  PubMed  Google Scholar 

  4. Rodriguez Guerra MA, UrenaNeme AP, Shaban M, Matos Noboa C, Trinh T. Pre-workout induced demand ischemia. Cureus. 2023;15:e33694.

    PubMed  PubMed Central  Google Scholar 

  5. Knapik JJ, Steelman RA, Hoedebecke SS, Austin KG, Farina EK, Lieberman HR. Prevalence of dietary supplement use by athletes: systematic review and meta-analysis. Sports Med. 2016;46:103–23.

    Article  PubMed  Google Scholar 

  6. Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J Acad Nutr Diet. 2016;116:501–28.

    Article  PubMed  Google Scholar 

  7. Braun H, Koehler K, Geyer H, Kleiner J, Mester J, Schanzer W. Dietary supplement use among elite young German athletes. Int J Sport Nutr Exerc Metab. 2009;19:97–109.

    Article  PubMed  Google Scholar 

  8. Martinez-Rodriguez A, Cuestas-Calero BJ, Hernandez-Garcia M, Martiez-Olcina M, Vicente-Martinez M, Rubio-Arias JA. Effect of supplements on endurance exercise in the older population: systematic review. Int J Environ Res Public Health. 2020;17(14):5224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ. Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev. 1999;107:123–36.

    Article  CAS  PubMed  Google Scholar 

  10. Durham WJ, Casperson SL, Dillon EL, Keske MA, Paddon-Jones D, Sanford AP, Hickner RC, Grady JJ, Sheffield-Moore M. Age-related anabolic resistance after endurance-type exercise in healthy humans. FASEB J. 2010;24:4117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crawford MH. Screening athletes for heart disease. Heart. 2007;93:875–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moorman AJ, Dean LS, Yang E, Drezner JA. Cardiovascular risk assessment in the older athlete. Sports Health. 2021;13:622–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maron BJ, Haas TS, Ahluwalia A, Murphy CJ, Garberich RF. Demographics and epidemiology of sudden deaths in young competitive athletes: from the United States National Registry. Am J Med. 2016;129:1170–7.

    Article  PubMed  Google Scholar 

  14. • Schnohr P, O’Keefe JH, Marott JL, Lange P, Jensen GB. Dose of jogging and long-term mortality: the Copenhagen City Heart Study. J Am Coll Cardiol. 2015;65:411–9. (Important study that provides insight into the prevalence of cardiovascular risk factors in recreational joggers)

    Article  PubMed  Google Scholar 

  15. Arem H, Moore SC, Patel A, Hartge P, Berrington de Gonzalez A, Visvanathan K, Campbell PT, Freedman M, Weiderpass E, Adami HO, Linet MS, Lee IM, Matthews CE. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern Med. 2015;175:959–67.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dores H, Goncalves PA, Monge J, Costa R, Tata L, Cardim N, Neuparth N, Sharma S. Coronary atherosclerotic burden in veteran male recreational athletes with low to intermediate cardiovascular risk. Rev Port Cardiol (Engl Ed). 2020;39:587–94.

    Article  PubMed  Google Scholar 

  17. Schultz MG, Sharman JE. Exercise hypertension. Pulse (Basel). 2014;1:161–76.

    Article  PubMed  Google Scholar 

  18. Merry TL, Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol. 2016;594:5135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. • Paulsen G, Cumming KT, Holden G, Hallen J, Ronnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen F, Wiig H, Ulseth ET, Garthe I, Blomhoff R, Benestad HB, Raastad T. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol. 2014;592:1887–901. (Important study on vitamin C and E supplementations and ergogenic effects)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paulsen G, Cumming KT, Hamarsland H, Borsheim E, Berntsen S, Raastad T. Can supplementation with vitamin C and E alter physiological adaptations to strength training? BMC Sports Sci Med Rehabil. 2014;6:28.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Malm C, Svensson M, Ekblom B, Sjodin B. Effects of ubiquinone-10 supplementation and high intensity training on physical performance in humans. Acta Physiol Scand. 1997;161:379–84.

    Article  CAS  PubMed  Google Scholar 

  22. • Kris-Etherton PM, Lichtenstein AH, Howard BV, Steinberg D, Witztum JL, Nutrition Committee of the American Heart Association Council on Nutrition PA and Metabolism. Antioxidant vitamin supplements and cardiovascular disease. Circulation. 2004;110:637–41. (Very important scientific position statement from the American Heart Association regarding the role of antioxidant therapies as therapeutic strategies for CVD)

    Article  CAS  PubMed  Google Scholar 

  23. • Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, Bubes V, Manson JE, Glynn RJ, Gaziano JM. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA. 2008;300:2123–33. (Very important study that explored the use of vitamins C and E and a primary prevention therapy to lower the risk of CVD.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: current evidence and mechanistic insights. Redox Biol. 2020;35:101471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Supplements NIoH-OoD. Dietary Supplements for Exercise and Athletic Performance. Fact Sheet for Health Professionals. 2022. https://ods.od.nih.gov/factsheets/ExerciseAndAthleticPerformance-HealthProfessional/.  Accessed 10 Jan 2024.

  26. Spaeth AM, Goel N, Dinges DF. Cumulative neurobehavioral and physiological effects of chronic caffeine intake: individual differences and implications for the use of caffeinated energy products. Nutr Rev. 2014;72(Suppl 1):34–47.

    Article  PubMed  Google Scholar 

  27. Garrett BE, Griffiths RR. The role of dopamine in the behavioral effects of caffeine in animals and humans. Pharmacol Biochem Behav. 1997;57:533–41.

    Article  CAS  PubMed  Google Scholar 

  28. Ganio MS, Klau JF, Casa DJ, Armstrong LE, Maresh CM. Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res. 2009;23:315–24.

    Article  PubMed  Google Scholar 

  29. Cappelletti S, Daria P, Sani G, Aromatario M. Caffeine:  cognitive and physical performance enhancer or psychoactive drug? Curr Neuropharmacol. 2015;13(1):71–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bunch KT, Peterson MB, Smith MB, Bunch TJ. An overview of the risks of contemporary energy drink consumption and their active ingredients on cardiovascular events. Curr Cardiovasc Risk Rep. 2023;17:39–48.

    Article  Google Scholar 

  31. Sampaio-Jorge F, Morales AP, Pereira R, Barth T, Ribeiro BG. Caffeine increases performance and leads to a cardioprotective effect during intense exercise in cyclists. Sci Rep. 2021;11:24327.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. • Porto AA, Benjamim CJR, Gonzaga LA, Luciano de Almeida M, Bueno Junior CR, Garner DM, Valenti VE. Caffeine intake and its influences on heart rate variability recovery in healthy active adults after exercise: a systematic review and meta-analysis. Nutr Metab Cardiovasc Dis. 2022;32:1071–82. (Important study on caffeine and its impact on cardiac autonomic function)

    Article  CAS  PubMed  Google Scholar 

  33. Shah SA, Szeto AH, Farewell R, Shek A, Fan D, Quach KN, Bhattacharyya M, Elmiari J, Chan W, O’Dell K, Nguyen N, McGaughey TJ, Nasir JM, Kaul S. Impact of high volume energy drink consumption on electrocardiographic and blood pressure parameters: a randomized trial. J Am Heart Assoc. 2019;8:e011318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. • Yu J, Lim JH, Seo SW, Lee D, Hong J, Kim J, Kim S, Nekar DM, Kang H. Effects of caffeine intake on cardiopulmonary variables and QT interval after a moderate-intensity aerobic exercise in healthy adults: a randomized controlled trial. Biomed Res Int. 2022;2022:3170947. (Very important study on blood pressure and QTc interval response to caffeine intake)

    PubMed  PubMed Central  Google Scholar 

  35. Nagelkirk PR, Sackett JR, Aiello JJ, Fitzgerald LF, Saunders MJ, Hargens TA, Womack CJ. Caffeine augments the prothrombotic but not the fibrinolytic response to exercise. Med Sci Sports Exerc. 2019;51:421–5.

    Article  CAS  PubMed  Google Scholar 

  36. Pasman WJ, van Baak MA, Jeukendrup AE, de Haan A. The effect of different dosages of caffeine on endurance performance time. Int J Sports Med. 1995;16:225–30.

    Article  CAS  PubMed  Google Scholar 

  37. • Graham TE, Spriet LL. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol. 1985;1995(78):867–74. (Very important study on hemodynamic response to caffeine dosing)

    Google Scholar 

  38. Evans J, Richards JR, Battisti AS. Caffeine.  In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2023.

  39. Broderick PJ, Benjamin AB, Dennis LW. Caffeine and psychiatric medication interactions: a review. J Okla State Med Assoc. 2005;98:380–4.

    PubMed  Google Scholar 

  40. • Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, Candow DG, Kleiner SM, Almada AL, Lopez HL. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017;14:18. (Very important position statement on the role of creatine supplementation is sports and exercise)

    Article  PubMed  PubMed Central  Google Scholar 

  41. • Clarke H, Kim DH, Meza CA, Ormsbee MJ, Hickner RC. The Evolving Applications of creatine supplementation: could creatine improve vascular health? Nutrients. 2020;12(19):2834. (Very important review on creatine supplementation and potential cardioprotective benefits.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. • Balestrino M. Role of creatine in the heart: health and disease. Nutrients. 2021;13:1215. (Very important review on the role of creatine and CVD.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perasso L, Spallarossa P, Gandolfo C, Ruggeri P, Balestrino M. Therapeutic use of creatine in brain or heart ischemia: available data and future perspectives. Med Res Rev. 2013;33:336–63.

    Article  CAS  PubMed  Google Scholar 

  44. Balestrino M, Sarocchi M, Adriano E, Spallarossa P. Potential of creatine or phosphocreatine supplementation in cerebrovascular disease and in ischemic heart disease. Amino Acids. 2016;48:1955–67.

    Article  CAS  PubMed  Google Scholar 

  45. Saks VA, Rosenshtraukh LV, Undrovinas AI, Smirnov VN, Chazov EI. Studies of energy transport in heart cells. Intracellular creatine content as a regulatory factor of frog heart energetics and force of contraction. Biochem Med. 1976;16:21–36.

    Article  CAS  PubMed  Google Scholar 

  46. Rosenshtraukh LV, Saks VA, Undrovinas AI, Chazov EI, Smirnov VN, Sharov VG. Studies of energy transport in heart cells. The effect of creatine phosphate on the frog ventricular contractile force and action potential duration. Biochem Med. 1978;19:148–64.

    Article  CAS  PubMed  Google Scholar 

  47. Neubauer S, Remkes H, Spindler M, Horn M, Wiesmann F, Prestle J, Walzel B, Ertl G, Hasenfuss G, Wallimann T. Downregulation of the Na(+)-creatine cotransporter in failing human myocardium and in experimental heart failure. Circulation. 1999;100:1847–50.

    Article  CAS  PubMed  Google Scholar 

  48. Kuethe F, Krack A, Richartz BM, Figulla HR. Creatine supplementation improves muscle strength in patients with congestive heart failure. Pharmazie. 2006;61:218–22.

    CAS  PubMed  Google Scholar 

  49. Carvalho AP, Rassi S, Fontana KE, Correa Kde S, Feitosa RH. Influence of creatine supplementation on the functional capacity of patients with heart failure. Arq Bras Cardiol. 2012;99:623–9.

    Article  CAS  PubMed  Google Scholar 

  50. Fumagalli S, Fattirolli F, Guarducci L, Cellai T, Baldasseroni S, Tarantini F, Di Bari M, Masotti G, Marchionni N. Coenzyme Q10 terclatrate and creatine in chronic heart failure: a randomized, placebo-controlled, double-blind study. Clin Cardiol. 2011;34:211–7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mount Sinai. Creatine. 2023;2023. https://www.mountsinai.org/health-library/supplement/creatine#:~:text=Rhabdomyolysis%20(breakdown%20of%20skeletal%20muscle,disease%20should%20not%20take%20creatine. Accessed Dec 11, 2023.

  52. Future Market Insights. United States Beetroot Supplement Market. 2023; https://www.futuremarketinsights.com/reports/united-states-beetroot-supplement-market. Accessed Oct 1, 2023.

  53. Stanaway L, Rutherfurd-Markwick K, Page R, Ali A. Performance and health benefits of dietary nitrate supplementation in older adults: a systematic review. Nutrients. 2017;9(11):1171.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lidder S, Webb AJ. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway. Br J Clin Pharmacol. 2013;75:677–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wylie LJ, Kelly J, Bailey SJ, Blackwell JR, Skiba PF, Winyard PG, Jeukendrup AE, Vanhatalo A, Jones AM. Beetroot juice and exercise: pharmacodynamic and dose-response relationships. J Appl Physiol. 1985;2013(115):325–36.

    Google Scholar 

  56. Lee JS, Stebbins CL, Jung E, Nho H, Kim JK, Chang MJ, Choi HM. Effects of chronic dietary nitrate supplementation on the hemodynamic response to dynamic exercise. Am J Physiol Regul Integr Comp Physiol. 2015;309:R459–66.

    Article  CAS  PubMed  Google Scholar 

  57. • Marsch E, Theelen TL, Janssen BJ, Briede JJ, Haenen GR, Senden JM, van Loon LJ, Poeze M, Bierau J, Gijbels MJ, Daemen MJ, Sluimer JC. The effect of prolonged dietary nitrate supplementation on atherosclerosis development. Atherosclerosis. 2016;245:212–21. (Important study evaluating the effects of nitrate supplementation and atherosclerosis.)

    Article  CAS  PubMed  Google Scholar 

  58. • Woessner MN, McIlvenna LC, Ortiz de Zevallos J, Neil CJ, Allen JD. Dietary nitrate supplementation in cardiovascular health: an ergogenic aid or exercise therapeutic? Am J Physiol Heart Circ Physiol. 2018;314:195–212. (Important review on nitrate supplementation and CVD health)

    Article  CAS  Google Scholar 

  59. Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88:1243–76.

    Article  CAS  PubMed  Google Scholar 

  60. Menezes EF, Peixoto LG, Teixeira RR, Justino AB, Puga GM, Espindola FS. Potential benefits of nitrate supplementation on antioxidant defense system and blood pressure responses after exercise performance. Oxid Med Cell Longev. 2019;2019:7218936.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors (LJC, MRB, MBS, and TJB) contributed to the source documentation research, manuscript construction and revisions, and final manuscript approval.

Corresponding author

Correspondence to T. Jared Bunch.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corbett, L.J., Bunch, M.R., Smith, M.B. et al. An Overview of the Risks and Impact of Pre-exercise Supplements for Exercise Performance, Recovery, and Cardiovascular Health. Curr Cardiovasc Risk Rep 18, 45–54 (2024). https://doi.org/10.1007/s12170-024-00735-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-024-00735-8

Keywords

Navigation