Skip to main content
Log in

The Pros and Cons of Mendelian Randomization Studies to Evaluate Emerging Cardiovascular Risk Factors

  • Novel and Emerging Risk Factors (Khurram Nasir, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Mendelian randomization (MR) is a technique that uses natural genetic variation to assess the potential causal role of a modifiable risk factor on cardiovascular disease. Advances have led to the identification of single nucleotide polymorphisms linked with risk factors that act as naturally randomized instruments to investigate the risk factor-disease relationship.

Recent Findings

There are several pros and cons when using MR. It can address many limitations of observational study design including confounding, reverse causation, and demonstration of causality when a randomized controlled trial is not practical or feasible. However, several limitations do exist and include pleiotropy (multiple downstream effects of a single genetic variant), linkage disequilibrium (non-random association of genetic variation), and imprecise estimates of causal effects.

Summary

MR is an important tool in cardiovascular research and has been applied to assess cardiovascular risk factors including obesity and atrial fibrillation. While these studies provide insight into disease causation, understanding the strengths and limitations of the technique is important for appropriate interpretation of results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet. 1986;1(8479):507–8.

    Article  CAS  PubMed  Google Scholar 

  2. Holmes MV, Ala-Korpela M, Smith GD. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol. 2017;14(10):577–90. https://doi.org/10.1038/nrcardio.2017.78.

    Article  CAS  PubMed  Google Scholar 

  3. Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol. 2004;33(1):30–42. https://doi.org/10.1093/ije/dyh132.

    Article  PubMed  Google Scholar 

  4. Tate JR, Rifai N, Berg K, Couderc R, Dati F, Kostner GM, et al. International Federation of Clinical Chemistry standardization project for the measurement of lipoprotein(a). Phase I. Evaluation of the analytical performance of lipoprotein(a) assay systems and commercial calibrators. Clin Chem. 1998;44(8 Pt 1):1629–40.

    CAS  PubMed  Google Scholar 

  5. Marcovina SM, Koschinsky ML, Albers JJ, Skarlatos S. Report of the National Heart, Lung, and Blood Institute Workshop on lipoprotein(a) and cardiovascular disease: recent advances and future directions. Clin Chem. 2003;49(11):1785–96. https://doi.org/10.1373/clinchem.2003.023689.

    Article  CAS  PubMed  Google Scholar 

  6. Kronenberg F, Trenkwalder E, Dieplinger H, Utermann G. Lipoprotein(a) in stored plasma samples and the ravages of time. Why epidemiological studies might fail. Arterioscler Thromb Vasc Biol. 1996;16(12):1568–72. https://doi.org/10.1161/01.ATV.16.12.1568.

    Article  CAS  PubMed  Google Scholar 

  7. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301(22):2331–9. https://doi.org/10.1001/jama.2009.801.

    Article  CAS  PubMed  Google Scholar 

  8. •• Elliott P, Chambers JC, Zhang W, Clarke R, Hopewell JC, Peden JF, et al. Genetic loci associated with C-reactive protein levels and risk of coronary heart disease. JAMA. 2009;302(1):37–48. https://doi.org/10.1001/jama.2009.954. This study evaluated the relationship between several variants associated with CRP levels and risk of development of CVD. No association was seen between a variant in the CRP gene and risk of CVD; however, there was positive association with a variant in the APOE. Variants in the APOE gene exhibits pleiotropy, affecting LDL-C levels in addition to CRP. This study highlights the strengths and limitations of Mendelian randomization as a technique to establish causal relationships.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perera FP. Environment and cancer: who are susceptible? Science. 1997;278(5340):1068–73. https://doi.org/10.1126/science.278.5340.1068.

    Article  CAS  PubMed  Google Scholar 

  10. • Holmes MV, Asselbergs FW, Palmer TM, Drenos F, Lanktree MB, Nelson CP, et al. Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J. 2015;36(9):539–50. https://doi.org/10.1093/eurheartj/eht571. This study evaluated the role of LDL-C, triglycerides, and HDL-C on the development of CVD. Using unique genetic risk scores for each of these variables, they confirmed a causal relationship between both LDL-C and triglycerides and CVD. They were unable to show that HLD-C was causally related to the development with CVD, similar to the many published trials on HDL-C raising medications.

    Article  CAS  PubMed  Google Scholar 

  11. Ference BA, Yoo W, Alesh I, Mahajan N, Mirowska KK, Mewada A, et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J Am Coll Cardiol. 2012;60(25):2631–9. https://doi.org/10.1016/j.jacc.2012.09.017.

    Article  CAS  PubMed  Google Scholar 

  12. White J, Swerdlow DI, Preiss D, Fairhurst-Hunter Z, Keating BJ, Asselbergs FW, et al. Association of lipid fractions with risks for coronary artery disease and diabetes. JAMA Cardiol. 2016;1(6):692–9. https://doi.org/10.1001/jamacardio.2016.1884.

    Article  PubMed  PubMed Central  Google Scholar 

  13. • Dale CE, Fatemifar G, Palmer TM, White J, Prieto-Merino D, Zabaneh D, et al. Causal associations of adiposity and body fat distribution with coronary heart disease, stroke subtypes, and type 2 diabetes mellitus: a Mendelian randomization analysis. Circulation. 2017;135(24):2373–88. https://doi.org/10.1161/CIRCULATIONAHA.116.026560. This study examined the relationship between general obesity and central obesity and risk of CVD. The investigators developed a more comprehensive genetic risk score than prior studies and found a positive association between both general and central obesity and CVD. They also examined a number of CVD risk factors and intermediate markers of CVD such as ECG parameters and found positive associations with several of these variables. This study highlights the causal role of general and central obesity in the development of CVD and identified several possible biologic mechanisms.

    Article  PubMed  Google Scholar 

  14. Emdin CA, Khera AV, Natarajan P, Klarin D, Zekavat SM, Hsiao AJ, et al. Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA. 2017;317(6):626–34. https://doi.org/10.1001/jama.2016.21042.

    Article  PubMed  Google Scholar 

  15. Toutouzas K, Klettas D, Anousakis-Vlachochristou N, Melidis K, Azilazian Z, Asimomiti M, et al. The -174 G>C interleukin-6 gene polymorphism is associated with angiographic progression of coronary artery disease over a 4-year period. Hell J Cardiol. 2017;58(1):80–6. https://doi.org/10.1016/j.hjc.2017.02.002.

    Article  Google Scholar 

  16. Zhao JV, Schooling CM. Endogenous androgen exposures and ischemic heart disease, a separate sample Mendelian randomization study. Int J Cardiol. 2016;222:940–5. https://doi.org/10.1016/j.ijcard.2016.07.174.

    Article  PubMed  Google Scholar 

  17. Gill D, Del Greco MF, Walker AP, Srai SKS, Laffan MA, Minelli C. The effect of iron status on risk of coronary artery disease: a Mendelian randomization study-brief report. Arterioscler Thromb Vasc Biol. 2017;37(9):1788–92. https://doi.org/10.1161/ATVBAHA.117.309757.

    Article  CAS  PubMed  Google Scholar 

  18. Schooling CM. Plasma levels of vitamin K and the risk of ischemic heart disease: a Mendelian randomization study. J Thromb Haemost. 2016;14(6):1211–5. https://doi.org/10.1111/jth.13332.

    Article  CAS  PubMed  Google Scholar 

  19. Merino J, Leong A, Posner DC, Porneala B, Masana L, Dupuis J, et al. Genetically driven hyperglycemia increases risk of coronary artery disease separately from type 2 diabetes. Diabetes Care. 2017;40(5):687–93. https://doi.org/10.2337/dc16-2625.

    Article  PubMed  Google Scholar 

  20. Zhan Y, Karlsson IK, Karlsson R, Tillander A, Reynolds CA, Pedersen NL, et al. Exploring the causal pathway from telomere length to coronary heart disease: a network Mendelian randomization study. Circ Res. 2017;121(3):214–9. https://doi.org/10.1161/CIRCRESAHA.116.310517.

    Article  CAS  PubMed  Google Scholar 

  21. Wu Z, Lou Y, Qiu X, Liu Y, Lu L, Chen Q, et al. Association of cholesteryl ester transfer protein (CETP) gene polymorphism, high density lipoprotein cholesterol and risk of coronary artery disease: a meta-analysis using a Mendelian randomization approach. BMC Med Genet. 2014;15(1):118. https://doi.org/10.1186/s12881-014-0118-1.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Niu W, Qi Y. Circulating cholesteryl ester transfer protein and coronary heart disease: Mendelian randomization meta-analysis. Circ Cardiovasc Genet. 2015;8(1):114–21. https://doi.org/10.1161/CIRCGENETICS.114.000748.

    Article  CAS  PubMed  Google Scholar 

  23. Hagg S, Fall T, Ploner A, Magi R, Fischer K, Draisma HH, et al. Adiposity as a cause of cardiovascular disease: a Mendelian randomization study. Int J Epidemiol. 2015;44(2):578–86. https://doi.org/10.1093/ije/dyv094.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nordestgaard BG, Palmer TM, Benn M, Zacho J, Tybjaerg-Hansen A, Davey Smith G, et al. The effect of elevated body mass index on ischemic heart disease risk: causal estimates from a Mendelian randomisation approach. PLoS Med. 2012;9(5):e1001212. https://doi.org/10.1371/journal.pmed.1001212.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Holmes MV, Lange LA, Palmer T, Lanktree MB, North KE, Almoguera B, et al. Causal effects of body mass index on cardiometabolic traits and events: a Mendelian randomization analysis. Am J Hum Genet. 2014;94(2):198–208. https://doi.org/10.1016/j.ajhg.2013.12.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Borges MC, Lawlor DA, de Oliveira C, White J, Horta BL, Barros AJ. Role of adiponectin in coronary heart disease risk: a Mendelian randomization study. Circ Res. 2016;119(3):491–9. https://doi.org/10.1161/CIRCRESAHA.116.308716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johansson A, Eriksson N, Lindholm D, Varenhorst C, James S, Syvanen AC, et al. Genome-wide association and Mendelian randomization study of NT-proBNP in patients with acute coronary syndrome. Hum Mol Genet. 2016;25(7):1447–56. https://doi.org/10.1093/hmg/ddw012.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao JV, Schooling CM. Homocysteine-reducing B vitamins and ischemic heart disease: a separate-sample Mendelian randomization analysis. Eur J Clin Nutr. 2017;71(2):267–73. https://doi.org/10.1038/ejcn.2016.246.

    Article  CAS  PubMed  Google Scholar 

  29. Kleber ME, Delgado G, Grammer TB, Silbernagel G, Huang J, Kramer BK, et al. Uric acid and cardiovascular events: a Mendelian randomization study. J Am Soc Nephrol. 2015;26(11):2831–8. https://doi.org/10.1681/ASN.2014070660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu L, Lin SL, Schooling CM. A Mendelian randomization study of the effect of calcium on coronary artery disease, myocardial infarction and their risk factors. Sci Rep. 2017;7:42691. https://doi.org/10.1038/srep42691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leong A, Rehman W, Dastani Z, Greenwood C, Timpson N, Langsetmo L, et al. The causal effect of vitamin D binding protein (DBP) levels on calcemic and cardiometabolic diseases: a Mendelian randomization study. PLoS Med. 2014;11(10):e1001751. https://doi.org/10.1371/journal.pmed.1001751.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Manousaki D, Mokry LE, Ross S, Goltzman D, Richards JB. Mendelian randomization studies do not support a role for vitamin D in coronary artery disease. Circ Cardiovasc Genet. 2016;9(4):349–56. https://doi.org/10.1161/CIRCGENETICS.116.001396.

    CAS  PubMed  Google Scholar 

  33. Zhong Y, Lin SL, Schooling CM. The effect of hematocrit and hemoglobin on the risk of ischemic heart disease: a Mendelian randomization study. Prev Med. 2016;91:351–5. https://doi.org/10.1016/j.ypmed.2016.09.003.

    Article  CAS  PubMed  Google Scholar 

  34. Svensson-Farbom P, Almgren P, Hedblad B, Engstrom G, Persson M, Christensson A, et al. Cystatin C is not causally related to coronary artery disease. PLoS One. 2015;10(6):e0129269. https://doi.org/10.1371/journal.pone.0129269.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005;366(9497):1640–9. https://doi.org/10.1016/S0140-6736(05)67663-5.

    Article  PubMed  Google Scholar 

  36. Vazquez G, Duval S, Jacobs DR Jr, Silventoinen K. Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol Rev. 2007;29(1):115–28. https://doi.org/10.1093/epirev/mxm008.

    Article  PubMed  Google Scholar 

  37. Han TS, Bijnen FC, Lean ME, Seidell JC. Separate associations of waist and hip circumference with lifestyle factors. Int J Epidemiol. 1998;27(3):422–30. https://doi.org/10.1093/ije/27.3.422.

    Article  CAS  PubMed  Google Scholar 

  38. Azarbal F, Stefanick ML, Salmoirago-Blotcher E, Manson JE, Albert CM, LaMonte MJ et al. Obesity, physical activity, and their interaction in incident atrial fibrillation in postmenopausal women. J Am Heart Assoc. 2014;3(4). https://doi.org/10.1161/JAHA.114.001127.

  39. Frost L, Hune LJ, Vestergaard P. Overweight and obesity as risk factors for atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Am J Med. 2005;118(5):489–95. https://doi.org/10.1016/j.amjmed.2005.01.031.

    Article  PubMed  Google Scholar 

  40. Huxley RR, Misialek JR, Agarwal SK, Loehr LR, Soliman EZ, Chen LY, et al. Physical activity, obesity, weight change, and risk of atrial fibrillation: the Atherosclerosis Risk in Communities study. Circ Arrhythm Electrophysiol. 2014;7(4):620–5. https://doi.org/10.1161/CIRCEP.113.001244.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tedrow UB, Conen D, Ridker PM, Cook NR, Koplan BA, Manson JE, et al. The long- and short-term impact of elevated body mass index on the risk of new atrial fibrillation the WHS (women’s health study). J Am Coll Cardiol. 2010;55(21):2319–27. https://doi.org/10.1016/j.jacc.2010.02.029.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vermond RA, Geelhoed B, Verweij N, Tieleman RG, Van der Harst P, Hillege HL, et al. Incidence of atrial fibrillation and relationship with cardiovascular events, heart failure, and mortality: a community-based study from the Netherlands. J Am Coll Cardiol. 2015;66(9):1000–7. https://doi.org/10.1016/j.jacc.2015.06.1314.

    Article  PubMed  Google Scholar 

  43. Wang TJ, Parise H, Levy D, D'Agostino RB Sr, Wolf PA, Vasan RS, et al. Obesity and the risk of new-onset atrial fibrillation. JAMA. 2004;292(20):2471–7. https://doi.org/10.1001/jama.292.20.2471.

    Article  CAS  PubMed  Google Scholar 

  44. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42(11):937–48. https://doi.org/10.1038/ng.686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. • Chatterjee NA, Giulianini F, Geelhoed B, Lunetta KL, Misialek JR, Niemeijer MN, et al. Genetic obesity and the risk of atrial fibrillation: causal estimates from Mendelian randomization. Circulation. 2017;135(8):741–54. https://doi.org/10.1161/CIRCULATIONAHA.116.024921. This study evaluated the causal role of obesity on the development of atrial fibrillation. They addressed this question using both a risk score consisting of multiple SNPS associated with BMI and the FTO gene which has the strongest association with BMI. Their results suggest a causal relationship between BMI and atrial fibrillation by both methods.

    Article  PubMed  Google Scholar 

  46. Preiss D, Seshasai SR, Welsh P, Murphy SA, Ho JE, Waters DD, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305(24):2556–64. https://doi.org/10.1001/jama.2011.860.

    Article  CAS  PubMed  Google Scholar 

  47. Swerdlow DI, Preiss D, Kuchenbaecker KB, Holmes MV, Engmann JE, Shah T, et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet. 2015;385(9965):351–61. https://doi.org/10.1016/S0140-6736(14)61183-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Emerging Risk Factors C, Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302(18):1993–2000. https://doi.org/10.1001/jama.2009.1619.

    Article  Google Scholar 

  49. Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849–61. https://doi.org/10.1016/S0140-6736(05)67667-2.

    Article  CAS  PubMed  Google Scholar 

  50. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22. https://doi.org/10.1056/NEJMoa0706628.

    Article  CAS  PubMed  Google Scholar 

  51. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99. https://doi.org/10.1056/NEJMoa1206797.

    Article  CAS  PubMed  Google Scholar 

  52. Group HTRC, Bowman L, Hopewell JC, Chen F, Wallendszus K, Stevens W, et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med. 2017;377(13):1217–27. https://doi.org/10.1056/NEJMoa1706444.

    Article  Google Scholar 

  53. Lincoff AM, Nicholls SJ, Riesmeyer JS, Barter PJ, Brewer HB, Fox KAA, et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med. 2017;376(20):1933–42. https://doi.org/10.1056/NEJMoa1609581.

    Article  PubMed  Google Scholar 

  54. Turer AT, Scherer PE. Adiponectin: mechanistic insights and clinical implications. Diabetologia. 2012;55(9):2319–26. https://doi.org/10.1007/s00125-012-2598-x.

    Article  CAS  PubMed  Google Scholar 

  55. Wildman RP, Mancuso P, Wang C, Kim M, Scherer PE, Sowers MR. Adipocytokine and ghrelin levels in relation to cardiovascular disease risk factors in women at midlife: longitudinal associations. Int J Obes. 2008;32(5):740–8. https://doi.org/10.1038/sj.ijo.0803782.

    Article  CAS  Google Scholar 

  56. Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2009;302(2):179–88. https://doi.org/10.1001/jama.2009.976.

    Article  CAS  PubMed  Google Scholar 

  57. Yamamoto Y, Hirose H, Saito I, Nishikai K, Saruta T. Adiponectin, an adipocyte-derived protein, predicts future insulin resistance: two-year follow-up study in Japanese population. J Clin Endocrinol Metab. 2004;89(1):87–90. https://doi.org/10.1210/jc.2003-031163.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang BC, Liu WJ, Che WL, Xu YW. Serum total adiponectin level and risk of cardiovascular disease in Han Chinese populations: a meta-analysis of 17 case-control studies. Clin Endocrinol. 2012;77(3):370–8. https://doi.org/10.1111/j.1365-2265.2011.04260.x.

    Article  CAS  Google Scholar 

  59. Zhang H, Mo X, Hao Y, Huang J, Lu X, Cao J, et al. Adiponectin levels and risk of coronary heart disease: a meta-analysis of prospective studies. Am J Med Sci. 2013;345(6):455–61. https://doi.org/10.1097/MAJ.0b013e318262dbef.

    Article  PubMed  Google Scholar 

  60. Hao G, Li W, Guo R, Yang JG, Wang Y, Tian Y, et al. Serum total adiponectin level and the risk of cardiovascular disease in general population: a meta-analysis of 17 prospective studies. Atherosclerosis. 2013;228(1):29–35. https://doi.org/10.1016/j.atherosclerosis.2013.02.018.

    Article  CAS  PubMed  Google Scholar 

  61. Sook Lee E, Park SS, Kim E, Sook Yoon Y, Ahn HY, Park CY, et al. Association between adiponectin levels and coronary heart disease and mortality: a systematic review and meta-analysis. Int J Epidemiol. 2013;42(4):1029–39. https://doi.org/10.1093/ije/dyt087.

    Article  PubMed  Google Scholar 

  62. Jernberg T, James S, Lindahl B, Stridsberg M, Venge P, Wallentin L. NT-proBNP in unstable coronary artery disease—experiences from the FAST, GUSTO IV and FRISC II trials. Eur J Heart Fail. 2004;6(3):319–25. https://doi.org/10.1016/j.ejheart.2004.01.007.

    Article  CAS  PubMed  Google Scholar 

  63. Bibbins-Domingo K, Gupta R, Na B, Wu AH, Schiller NB, Whooley MA. N-terminal fragment of the prohormone brain-type natriuretic peptide (NT-proBNP), cardiovascular events, and mortality in patients with stable coronary heart disease. JAMA. 2007;297(2):169–76. https://doi.org/10.1001/jama.297.2.169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Olsson LG, Swedberg K, Cleland JG, Spark PA, Komajda M, Metra M, et al. Prognostic importance of plasma NT-pro BNP in chronic heart failure in patients treated with a beta-blocker: results from the Carvedilol Or Metoprolol European Trial (COMET) trial. Eur J Heart Fail. 2007;9(8):795–801. https://doi.org/10.1016/j.ejheart.2007.07.010.

    Article  CAS  PubMed  Google Scholar 

  65. Wallentin L, Lindholm D, Siegbahn A, Wernroth L, Becker RC, Cannon CP, et al. Biomarkers in relation to the effects of ticagrelor in comparison with clopidogrel in non-ST-elevation acute coronary syndrome patients managed with or without in-hospital revascularization: a substudy from the Prospective Randomized Platelet Inhibition and Patient Outcomes (PLATO) trial. Circulation. 2014;129(3):293–303. https://doi.org/10.1161/CIRCULATIONAHA.113.004420.

    Article  CAS  PubMed  Google Scholar 

  66. Hijazi Z, Oldgren J, Andersson U, Connolly SJ, Ezekowitz MD, Hohnloser SH, et al. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: a Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) substudy. Circulation. 2012;125(13):1605–16. https://doi.org/10.1161/CIRCULATIONAHA.111.038729.

    Article  CAS  PubMed  Google Scholar 

  67. Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375(24):2349–58. https://doi.org/10.1056/NEJMoa1605086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr. Neeland is supported by grant K23DK106520 from the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institute of Health and by the Dedman Family Scholarship in Clinical Care from UT Southwestern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian J. Neeland.

Ethics declarations

Conflict of Interest

Dr. Neeland reports personal fees from Boehringer-Ingelheim, American Heart Association, and from Advanced MR Analytics AB, plus grants from Novo Nordisk.

Dr. Savla has nothing to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Novel and Emerging Risk Factors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savla, J., Neeland, I.J. The Pros and Cons of Mendelian Randomization Studies to Evaluate Emerging Cardiovascular Risk Factors. Curr Cardiovasc Risk Rep 12, 2 (2018). https://doi.org/10.1007/s12170-018-0566-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-018-0566-9

Keywords

Navigation