Skip to main content
Log in

Cardiac Arrhythmia Due to Epicardial Fat: Is It a Modifiable Risk?

  • Arrhythmias (J. Bunch, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Obesity and metabolic syndrome are one of the modifiable determinants for the risk of cardiac arrhythmias, especially atrial fibrillation (AF). A strong association between visceral fat and obesity or metabolic syndrome has been established.

Recent Findings

Recently, much clinical interest has been focused on epicardial adipose tissue (EAT), as visceral fat and cardiac arrhythmias, especially in AF. Increasing data suggests that EAT is associated with the incidence and severity of AF. Several experimental studies have shown that EAT exerts biochemical effects on the cardiovascular system, including insulin resistance, atherosclerosis, hypertension, arterial stiffness, an impaired coronary flow reserve, and a high rate of free fatty acid uptake, beta-adrenergic activity, and local and systemic inflammation. Due to multiple factors associated with AF and EAT, the exact underlying mechanism remains unknown. In addition, the association between EAT and ventricular tachyarrhythmias remains unclear.

Summary

In the present paper, we reviewed the role that EAT plays in the pathogenesis of cardiac arrhythmias such as AF and ventricular tachyarrhythmias and explored whether EAT could be a modifiable risk factor for cardiac arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. Jama. 2003;289:76–9.

    Article  PubMed  Google Scholar 

  2. Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67:968–77.

    Article  CAS  PubMed  Google Scholar 

  3. Morricone L, Malavazos AE, Coman C, Donati C, Hassan T, Caviezel F. Echocardiographic abnormalities in normotensive obese patients: relationship with visceral fat. Obes res. 2002;10:489–98.

    Article  PubMed  Google Scholar 

  4. Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, et al. Echocardiographic epicardial adipose tissue ıs related to anthropometric and clinical parameters of metabolic syndrome: a new ındicator of cardiovascular risk. J Clin Endocrinol Metab. 2003;88:5163–8.

    Article  CAS  PubMed  Google Scholar 

  5. Iacobellis G, Ribaudo MC, Zappaterreno A, Iannucci CV, Leonetti F. Relation between epicardial adipose tissue and left ventricular mass. Am J Cardiol. 2004;94:1084–7.

    Article  PubMed  Google Scholar 

  6. Iacobellis G, Leonetti F, Singh N, Sharma AM. Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. Int J Cardiol. 2007;115:272–3.

    Article  PubMed  Google Scholar 

  7. • Fox CS, Gona P, Hoffmann U, Porter SA, Salton CJ, Massaro JM, et al. Pericardial fat, intrathoracic fat, and measures of left ventricular structure and function: the Framingham Heart Study. Circulation. 2009;119:1586–91. Their data from a large cohort study suggest that any potential local pathological effects of pericardial fat on the LV structure and function are overwhelmed by the systemic effects of obesity.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thanassoulis G, Massaro JM, O'Donnell CJ, Hoffmann U, Levy D, Ellinor PT, et al. Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Heart Study. Circ Arrhythmia Electrophysiol. 2010;3:345–50.

    Article  Google Scholar 

  9. Al Chekakie MO, Welles CC, Metoyer R, Ibrahim A, Shapira AR, Cytron J, et al. Pericardial fat is independently associated with human atrial fibrillation. J Am Coll Cardiol. 2010;56:784–8.

    Article  PubMed  Google Scholar 

  10. Nagashima K, Okumura Y, Watanabe I, Nakai T, Ohkubo K, Kofune T, et al. Association between epicardial adipose tissue volumes on 3-dimensional reconstructed CT images and recurrence of atrial fibrillation after catheter ablation. Circ J. 2011;75:2559–65.

    Article  CAS  PubMed  Google Scholar 

  11. Tsao HM, Hu WC, Wu MH, Tai CT, Lin YJ, Chang SL, et al. Quantitative analysis of quantity and distribution of epicardial adipose tissue surrounding the left atrium in patients with atrial fibrillation and effect of recurrence after ablation. Am J Cardiol. 2011;107:1498–503.

    Article  PubMed  Google Scholar 

  12. Wong CX, Abed HS, Molaee P, Nelson AJ, Brooks AG, Sharma G, et al. Pericardial fat is associated with atrial fibrillation severity and ablation outcome. J Am Coll Cardiol. 2011;57:1745–51.

    Article  PubMed  Google Scholar 

  13. Cho KI, Kim BJ, Cha TJ, Heo JH, Kim HS, Lee JW. Impact of duration and dosage of statin treatment and epicardial fat thickness on the recurrence of atrial fibrillation after electrical cardioversion. Heart Vessel. 2015;30:490–7.

    Article  Google Scholar 

  14. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92:1954–68.

    Article  CAS  PubMed  Google Scholar 

  15. Hara M, Shvilkin A, Rosen MR, Danilo P Jr, Boyden PA. Steady-state and nonsteady-state action potentials in fibrillating canine atrium: abnormal rate adaptation and its possible mechanisms. Cardiovasc Res. 1999;42:455–69.

    Article  CAS  PubMed  Google Scholar 

  16. Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res. 2002;54:230–46. Review

    Article  CAS  PubMed  Google Scholar 

  17. •• Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108:2460–6. This is the first clinical study that epicardial adipose tissue is a source of several inflammatory mediators in high-risk cardiac patients. Their data also suggested that local tissue inflammation may not be reflected by systemic circulating plasma inflammatory biomarkers.

    Article  PubMed  Google Scholar 

  18. Iacobellis G, Barbaro G. The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm Metab res. 2008;40:442–5.

    Article  CAS  PubMed  Google Scholar 

  19. Baker AR, Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol. 2006;5:1.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Greulich S, Maxhera B, Vandenplas G, de Wiza DH, Smiris K, Mueller H, et al. Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction. Circulation. 2012;126:2324–34.

    Article  CAS  PubMed  Google Scholar 

  21. • Venteclef N, Guglielmi V, Balse E, Gaborit B, Cotillard A, Atassi F, et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J. 2015;36:795–805. Despite an ex vivo study, this is the data supporting the evidence that the EAT may have profibrotic effect on the neighboring atrial myocardium.

    Article  PubMed  Google Scholar 

  22. Zghaib T, Ipek EG, Zahid S, Balouch MA, Misra S, Ashikaga H, et al. Association of left atrial epicardial adipose tissue with electrogram bipolar voltage and fractionation: electrophysiologic substrates for atrial fibrillation. Heart Rhythm. 2016;13:2333–9.

    Article  PubMed  Google Scholar 

  23. Takahashi K, Okumura Y, Watanabe I, Nagashima K, Sonoda K, Sasaki N, et al. Anatomical proximity between ganglionated plexi and epicardial adipose tissue in the left atrium: implication for 3D reconstructed epicardial adipose tissue-based ablation. J Interv Card Electrophysiol. 2016;47:203–12.

    Article  PubMed  Google Scholar 

  24. Hatem SN, Sanders P. Epicardial adipose tissue and atrial fibrillation. Cardiovasc res. 2014;102:205–13.

    Article  CAS  PubMed  Google Scholar 

  25. Mahajan R, Lau DH, Brooks AG, Shipp NJ, Manavis J, Wood J, et al. Electrophysiological, electroanatomical and structural remodeling of the atria as a consequence of sustained obesity. J am Coll Cardiol. 2015;66:1–11.

    Article  CAS  PubMed  Google Scholar 

  26. Nagashima K, Okumura Y, Watanabe I, Nakai T, Ohkubo K, Kofune M, et al. Does location of epicardial adipose tissue correspond to endocardial high dominant frequency or complex fractionated atrial electrogram sites during atrial fibrillation? Circ Arrhythm Electrophysiol. 2012;5:676–83.

    Article  PubMed  Google Scholar 

  27. Nakatani Y, Kumagai K, Minami K, Nakano M, Inoue H, Oshima S. Location of epicardial adipose tissue affects the efficacy of a combined dominant frequency and complex fractionated atrial electrogram ablation of atrial fibrillation. Heart Rhythm. 2015;12:257–65.

    Article  PubMed  Google Scholar 

  28. Nakahara S, Hori Y, Kobayashi S, Sakai Y, Taguchi I, Takayanagi K, et al. Epicardial adipose tissue-based defragmentation approach to persistent atrial fibrillation: its impact on complex fractionated electrograms and ablation outcome. Heart Rhythm. 2014;11:1343–51.

    Article  PubMed  Google Scholar 

  29. Po SS, Nakagawa H, Jackman WM. Localization of left atrial ganglionated plexi in patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2009;20:1186–9.

    Article  PubMed  Google Scholar 

  30. Pokushalov E, Kozlov B, Romanov A, Strelnikov A, Bayramova S, Sergeevichev D, et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: one year follow up of a randomized pilot study. Circ Arrhythm Electrophysiol. 2015;8:1334–41.

    CAS  PubMed  Google Scholar 

  31. Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014;114:1500–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu Y, Wei C, Liu L, Lian AL, Qu XF, Yu G. Atrial fibrillation increases sympathetic and parasympathetic neurons in the intricsic cardiac nervous system. Pacing Clin Electrophysiol. 2014;37:1462–9.

    Article  PubMed  Google Scholar 

  33. Marchington JM, Mattacks CA, Pond CM. Adipose tissue in the mammalian heart and pericardium: structure, foetal development and biochemical properties. Comp Biochem Physiol B. 1989;94:225–32.

    Article  CAS  PubMed  Google Scholar 

  34. Wu CK, Tsai HY, Su MY, Wu YF, Hwang JJ, Tseng WY, et al. Pericardial fat is associated with ventricular tachyarrhythmia and mortality in patients with systolic heart failure. Atherosclerosis. 2015;241:607–14.

    Article  CAS  PubMed  Google Scholar 

  35. Kırış A, Turan OE, Kırış G, İlter A, Öztürk M, Aydın M, et al. The relationship between epicardial fat tissue thickness and frequent ventricular premature beats. Kardiol pol. 2015;73:527–32.

    Article  PubMed  Google Scholar 

  36. Tam WC, Lin YK, Chan WP, Huang JH, Hsieh MH, Chen SA, et al. Pericardial fat is associated with the risk of ventricular arrhythmia in Asian patients. Circ J. 2016;80:1726–33.

    Article  PubMed  Google Scholar 

  37. Kaplan O, Kurtoglu E, Nar G, Yasar E, Gozubuyuk G, Dogan C, et al. Evaluation of electrocardiographic T-peak to T-end interval in subjects with increased epicardial fat tissue thickness. Arq Bras Cardiol. 2015;105:566–72.

    PubMed  PubMed Central  Google Scholar 

  38. Blangy H, Sadoul N, Dousset B, Radauceanu A, Fay R, Aliot E, et al. Serum BNP, hs-C-reactive protein, procollagen to assess the risk of ventricular tachycardia in ICD recipients after myocardial infarction. Europace. 2007;9:724–9.

    Article  PubMed  Google Scholar 

  39. Nguyen BL, Fishbein MC, Chen LS, Chen PS, Masroor S. Histopathological substrate for chronic atrial fibrillation in humans. Heart Rhythm. 2009;6:454–60.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Oakes RS, Badger TJ, Kholmovski EG, Akoum N, Burgon NS, Fish EN, et al. Detection and quantification of left atrial structural remodeling using delayed enhancement MRI in patients with atrial fibrillation. Circulation. 2009;119:1758–67.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kankaanpää M, Lehto HR, Pärkkä JP, Komu M, Viljanen A, Ferrannini E, et al. Myocardial triglyceride content and epicardial fat mass in human obesity: relationship to left ventricular function and serum free fatty acid levels. J Clin Endocrinol Metab. 2006;91:4689–95.

  42. Hori Y, Nakahara S, Kamijima T, Tsukada N, Hayashi A, Kobayashi S, et al. Influence of left atrium anatomical contact area in persistent atrial fibrillation—relationship between low-voltage area and fractionated electrogram. Circ J. 2014;78:1851–7.

    Article  PubMed  Google Scholar 

  43. Desjardins B, Morady F, Bogun F. Effect of Epicardial fat on Electroanatomical mapping and Epicardial catheter ablation. J Am Coll Cardiol. 2010;56:1320–7.

    Article  PubMed  Google Scholar 

  44. Iacobellis G, Singh N, Wharton S, Sharma AM. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring). 2008;16:1693–7.

    Article  Google Scholar 

  45. Willens HJ, Byers P, Chirinos JA, Labrador E, Hare JM, de Marchena E. Effects of weight loss after bariatric surgery on epicardial fat measured using echocardiography. Am J Cardiol. 2007;99:1242–5.

    Article  PubMed  Google Scholar 

  46. Nakazato R, Rajani R, Cheng VY, Shmilovich H, Nakanishi R, Otaki Y, et al. Weight change modulates epicardial fat burden: a 4-year serial study with non-contrast computed tomography. Atherosclerosis. 2012;220:139–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Okumura.

Ethics declarations

Conflict of Interest

Dr. Okumura declares no conflicts of interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Arrhythmias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okumura, Y. Cardiac Arrhythmia Due to Epicardial Fat: Is It a Modifiable Risk?. Curr Cardiovasc Risk Rep 11, 23 (2017). https://doi.org/10.1007/s12170-017-0547-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-017-0547-4

Keywords

Navigation