Skip to main content

Advertisement

Log in

SGLT-2 Inhibitors: Potential Novel Strategy to Prevent Congestive Heart Failure in Diabetes?

  • Heart Failure Prevention (W Tang, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Sodium-glucose transporter-2 (SGLT-2) inhibitors have emerged as novel oral glucose-lowering agents for type 2 diabetes. SGLT-2 inhibitors improve glycemic control by blocking sodium-glucose cotransport in the renal proximal tubules, thereby promoting glycosuria. In this review, it is discussed mechanistically how SGLT-2 inhibitors might be particularly relevant to use in patients with or at high risk for heart failure. On a daily base, SGLT-2 inhibitors block ~330–495 mEq sodium reabsorbed in the proximal tubules, although substantial amounts can be reabsorbed more distally in the nephron. Increased sodium offering to the distal nephron is sensed at the macula densa and may attenuate neurohumoral activation, thereby improving salt sensitivity, augmenting diuretic efficacy of loop and thiazide diuretics, and potentiating the native natriuretic peptide system. Whether the favorable profile offered by SGLT-2 inhibitors is renoprotective and whether SGLT-2 inhibition can relieve and/or prevent congestion beyond traditional diuretic drugs warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Yancy CW, Lopatin M, Stevenson LW, De Marco T, Fonarow GC. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) database. J Am Coll Cardiol. 2006;47:76–84.

    Article  PubMed  Google Scholar 

  2. Fonarow GC, Stough WG, Abraham WT, Albert NM, Gheorghiade M, Greenberg BH, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol. 2007;50:768–77.

    Article  PubMed  Google Scholar 

  3. Steinberg BA, Zhao X, Heidenreich PA, Peterson ED, Bhatt DL, Cannon CP, et al. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation. 2012;126:65–75.

    Article  PubMed  Google Scholar 

  4. Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59:998–1005.

    Article  PubMed  Google Scholar 

  5. Komajda M, McMurray JJ, Beck-Nielsen H, Gomis R, Hanefeld M, Pocock SJ, et al. Heart failure events with rosiglitazone in type 2 diabetes: data from the RECORD clinical trial. Eur Heart J. 2010;31:824–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–26.

    Article  CAS  PubMed  Google Scholar 

  7. Ekeruo IA, Solhpour A, Taegtmeyer H. Metformin in diabetic patients with heart failure: safe and effective? Curr Cardiovasc Risk Rep. 2013;7:417–22.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Nair S, Wilding JP. Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J Clin Endocrinol Metab. 2010;95:34–42.

    Article  CAS  PubMed  Google Scholar 

  9. Elsas LJ, Rosenberg LE. Familial renal glycosuria: a genetic reappraisal of hexose transport by kidney and intestine. J Clin Invest. 1969;48:1845–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Elsas LJ, Busse D, Rosenberg LE. Autosomal recessive inheritance of renal glycosuria. Metabolism. 1971;20:968–75.

    Article  CAS  PubMed  Google Scholar 

  11. van den Heuvel LP, Assink K, Willemsen M, Monnens L. Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum Genet. 2002;111:544–7.

    Article  PubMed  Google Scholar 

  12. Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:2223–33.

    Article  CAS  PubMed  Google Scholar 

  13. Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care. 2010;33:2217–24.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Nauck MA, Del Prato S, Meier JJ, Duran-Garcia S, Rohwedder K, Elze M, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care. 2011;34:2015–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Strojek K, Yoon KH, Hruba V, Elze M, Langkilde AM, Parikh S. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2011;13:928–38.

    Article  CAS  PubMed  Google Scholar 

  16. Wilding JP, Woo V, Soler NG, Pahor A, Sugg J, Rohwedder K, et al. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med. 2012;156:405–15.

    Article  PubMed  Google Scholar 

  17. Cefalu WT, Leiter LA, Yoon KH, Arias P, Niskanen L, Xie J, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet. 2013;382:941–50.

    Article  CAS  PubMed  Google Scholar 

  18. Roden M, Weng J, Eilbracht J, Delafont B, Kim G, Woerle HJ, et al. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2013;1:208–19.

    Article  CAS  PubMed  Google Scholar 

  19. Bailey CJ, Gross JL, Hennicken D, Iqbal N, Mansfield TA, List JF. Dapagliflozin add-on to metformin in type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled 102-week trial. BMC Med. 2013;11:43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Schernthaner G, Gross JL, Rosenstock J, Guarisco M, Fu M, Yee J, et al. Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: a 52-week randomized trial. Diabetes Care. 2013;36:2508–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Stenlof K, Cefalu WT, Kim KA, Alba M, Usiskin K, Tong C, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013;15:372–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lavalle-Gonzalez FJ, Januszewicz A, Davidson J, Tong C, Qiu R, Canovatchel W, et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia. 2013;56:2582–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wilding JP, Charpentier G, Hollander P, Gonzalez-Galvez G, Mathieu C, Vercruysse F, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract. 2013;67:1267–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Haring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Broedl UC, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2014;37:1650–9.

    Article  PubMed  Google Scholar 

  25. Rosenstock J, Jelaska A, Frappin G, Salsali A, Kim G, Woerle HJ, et al. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care. 2014;37:1815–23.

    Article  CAS  PubMed  Google Scholar 

  26. Forst T, Guthrie R, Goldenberg R, Yee J, Vijapurkar U, Meininger G, et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone. Diabetes Obes Metab. 2014;16:467–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kohan DE, Fioretto P, Tang W, List JF. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014;85:962–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens. 2014;8:262–75.

    Article  CAS  PubMed  Google Scholar 

  29. Neal B, Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Stein P, et al. Rationale, design, and baseline characteristics of the Canagliflozin Cardiovascular Assessment Study (CANVAS)–a randomized placebo-controlled trial. Am Heart J. 2013;166:217–23 e11. Methods paper of the first large trial with canagliflozin that will be powered for cardiovascular outcome evaluation.

    Article  CAS  PubMed  Google Scholar 

  30. Zinman B, Inzucchi SE, Lachin JM, Wanner C, Ferrari R, Fitchett D, et al. Rationale, design, and baseline characteristics of a randomized, placebo-controlled cardiovascular outcome trial of empagliflozin (EMPA-REG OUTCOME). Cardiovasc Diabetol. 2014;13:102. Methods paper of the first large trial with empagliflozin that will be powered for cardiovascular outcome evaluation.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Crane RK. Intestinal absorption of sugars. Physiol Rev. 1960;40:789–825.

    CAS  PubMed  Google Scholar 

  32. Hediger MA, Rhoads DB. Molecular physiology of sodium-glucose cotransporters. Physiol Rev. 1994;74:993–1026.

    CAS  PubMed  Google Scholar 

  33. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91:733–94.

    Article  CAS  PubMed  Google Scholar 

  34. Martin MG, Turk E, Lostao MP, Kerner C, Wright EM. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nat Genet. 1996;12:216–20.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou L, Cryan EV, D’Andrea MR, Belkowski S, Conway BR, Demarest KT. Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT1). J Cell Biochem. 2003;90:339–46.

    Article  CAS  PubMed  Google Scholar 

  36. Santer R, Kinner M, Lassen CL, Schneppenheim R, Eggert P, Bald M, et al. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol. 2003;14:2873–82.

    Article  CAS  PubMed  Google Scholar 

  37. Vidotti DB, Arnoni CP, Maquigussa E, Boim MA. Effect of long-term type 1 diabetes on renal sodium and water transporters in rats. Am J Nephrol. 2008;28:107–14.

    Article  PubMed  Google Scholar 

  38. Freitas HS, Anhe GF, Melo KF, Okamoto MM, Oliveira-Souza M, Bordin S, et al. Na(+)-glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1alpha expression and activity. Endocrinology. 2008;149:717–24.

    Article  CAS  PubMed  Google Scholar 

  39. Inzucchi SE, Zinman B, Wanner C, Ferrari R, Fitchett D, Hantel S, et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res. 2015;12:90–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Tahrani AA, Barnett AH, Bailey CJ. SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol. 2013;1:140–51.

    Article  CAS  PubMed  Google Scholar 

  41. Oliva RV, Bakris GL. Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J Am Soc Hypertens. 2014;8:330–9.

    Article  CAS  PubMed  Google Scholar 

  42. Calado J, Sznajer Y, Metzger D, Rita A, Hogan MC, Kattamis A, et al. Twenty-one additional cases of familial renal glucosuria: absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion. Nephrol Dial Transplant. 2008;23:3874–9.

    Article  CAS  PubMed  Google Scholar 

  43. Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129:587–97. Elegant study describing the effects of SGLT-2 inhibition on the level of the kidneys. This study puts forward the concept of using SGLT-2 inhibitors to protect the nephron from hyperfiltration, which might prevent or slow down the progression of diabetic nephropathy.

    Article  CAS  PubMed  Google Scholar 

  44. McKie PM, Schirger JA, Costello-Boerrigter LC, Benike SL, Harstad LK, Bailey KR, et al. Impaired natriuretic and renal endocrine response to acute volume expansion in pre-clinical systolic and diastolic dysfunction. J Am Coll Cardiol. 2011;58:2095–103.

    Article  CAS  PubMed  Google Scholar 

  45. Verbrugge FH, Dupont M, Steels P, Grieten L, Swennen Q, Tang WH, et al. The kidney in congestive heart failure: ‘are natriuresis, sodium, and diuretics really the good, the bad and the ugly? Eur J Heart Fail. 2014;16:133–42. This manuscript reviews the alterations in renal sodium handling that occur in heart failure and highlights the potentially important role for inhibition of proximal sodium transport to cease neurohumoral activation and improve natriuresis in heart failure.

    Article  CAS  PubMed  Google Scholar 

  46. Bautista R, Manning R, Martinez F, Avila-Casado Mdel C, Soto V, Medina A, et al. Angiotensin II-dependent increased expression of Na+-glucose cotransporter in hypertension. Am J Physiol Renal Physiol. 2004;286:F127–33.

    Article  CAS  PubMed  Google Scholar 

  47. Verbrugge FH, Steels P, Grieten L, Nijst P, Tang WH, Mullens W. Hyponatremia in acute decompensated heart failure: depletion versus dilution. J Am Coll Cardiol. 2015;65:480–92.

    Article  CAS  PubMed  Google Scholar 

  48. Testani JM, Brisco MA, Turner JM, Spatz ES, Bellumkonda L, Parikh CR, et al. Loop diuretic efficiency: a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ Heart Fail. 2014;7:261–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Singh D, Shrestha K, Testani JM, Verbrugge FH, Dupont M, Mullens W, et al. Insufficient natriuretic response to continuous intravenous furosemide is associated with poor long-term outcomes in acute decompensated heart failure. J Card Fail. 2014;20:392–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Verbrugge FH, Nijst P, Dupont M, Reynders C, Penders J, Tang WH, et al. Prognostic value of glomerular filtration changes versus natriuretic response in decompensated heart failure with reduced ejection. J Card Fail. 2014;20:817–24.

    Article  CAS  PubMed  Google Scholar 

  51. Magee GM, Bilous RW, Cardwell CR, Hunter SJ, Kee F, Fogarty DG. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia. 2009;52:691–7.

    Article  CAS  PubMed  Google Scholar 

  52. Jerums G, Premaratne E, Panagiotopoulos S, MacIsaac RJ. The clinical significance of hyperfiltration in diabetes. Diabetologia. 2010;53:2093–104.

    Article  CAS  PubMed  Google Scholar 

  53. Ruggenenti P, Porrini EL, Gaspari F, Motterlini N, Cannata A, Carrara F, et al. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care. 2012;35:2061–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Schnermann J. Juxtaglomerular cell complex in the regulation of renal salt excretion. Am J Physiol. 1998;274:R263–79.

    CAS  PubMed  Google Scholar 

  55. Vallon V, Richter K, Blantz RC, Thomson S, Osswald H. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol. 1999;10:2569–76.

    CAS  PubMed  Google Scholar 

  56. Kastner PR, Hall JE, Guyton AC. Renal hemodynamic responses to increased renal venous pressure: role of angiotensin II. Am J Physiol. 1982;243:F260–4.

    CAS  PubMed  Google Scholar 

  57. Hillege HL, Girbes AR, de Kam PJ, Boomsma F, de Zeeuw D, Charlesworth A, et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000;102:203–10.

    Article  CAS  PubMed  Google Scholar 

  58. Fonarow GC, Adams Jr KF, Abraham WT, Yancy CW, Boscardin WJ. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA. 2005;293:572–80.

    Article  CAS  PubMed  Google Scholar 

  59. Aurigemma GP, Gaasch WH. Clinical practice. Diastolic heart failure. N Engl J Med. 2004;351:1097–105.

    Article  CAS  PubMed  Google Scholar 

  60. Quiroz R, Doros G, Shaw P, Liang CS, Gauthier DF, Sam F. Comparison of characteristics and outcomes of patients with heart failure preserved ejection fraction versus reduced left ventricular ejection fraction in an urban cohort. Am J Cardiol. 2014;113:691–6.

    Article  PubMed  Google Scholar 

  61. Monami M, Nardini C, Mannucci E. Efficacy and safety of sodium glucose co-transport-2 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16:457–66.

    Article  CAS  PubMed  Google Scholar 

  62. Bolinder J, Ljunggren O, Kullberg J, Johansson L, Wilding J, Langkilde AM, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97:1020–31.

    Article  CAS  PubMed  Google Scholar 

  63. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15:853–62.

    Article  CAS  PubMed  Google Scholar 

  64. Hummel SL, Seymour EM, Brook RD, Sheth SS, Ghosh E, Zhu S, et al. Low-sodium DASH diet improves diastolic function and ventricular-arterial coupling in hypertensive heart failure with preserved ejection fraction. Circ Heart Fail. 2013;6:1165–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Nijst P, Verbrugge FH, Grieten L, Dupont M, Steels P, Tang WH, et al. The pathophysiological role of interstitial sodium in heart failure. J Am Coll Cardiol. 2015;65:378–88.

    Article  CAS  PubMed  Google Scholar 

  66. Radin MJ, Holycross BJ, Hoepf TM, McCune SA. Salt-induced cardiac hypertrophy is independent of blood pressure and endothelin in obese, heart failure-prone SHHF rats. Clin Exp Hypertens. 2008;30:541–52.

    Article  CAS  PubMed  Google Scholar 

  67. Wilding JP, Norwood P, T’Joen C, Bastien A, List JF, Fiedorek FT. A study of dapagliflozin in patients with type 2 diabetes receiving high doses of insulin plus insulin sensitizers: applicability of a novel insulin-independent treatment. Diabetes Care. 2009;32:1656–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

F.V. is supported by a PhD fellowship of the Research Foundation—Flanders (FWO, 11L8214N) and is a researcher for the Limburg Clinical Research Program (LCRP) UHasselt-ZOL-Jessa, supported by the foundation Limburg Sterk Merk (LSM), Hasselt University, Ziekenhuis Oost-Limburg, and Jessa Hospital. C.M. serves or has served on the advisory panel for Novo Nordisk, Sanofi-Aventis, Merck Sharp and Dohme, Ltd., Eli Lilly and Company, Novartis, Bristol-Myers Squibb, AstraZeneca, Pfizer, Janssen Pharmaceuticals, Boehringer Ingelheim, Hanmi Pharmaceuticals, and Mannkind; KU Leuven has received research support from Novo Nordisk, Sanofi-Aventis, Merck Sharp and Dohme, Ltd., Eli Lilly and Company, Roche, Abbott, and Novartis; CM serves or has served on the speakers bureau for Novo Nordisk, Sanofi-Aventis, Merck Sharp and Dohme, Eli Lilly and Company, Astra Zeneca, and Novartis. C.M. W.H.T. is supported by grants from the National Institutes of Health (R01HL103931).

Compliance with Ethics Guidelines

Conflict of Interest

W.H. Wilson Tang is employed at Cleveland Clinic; Tang has received grant support from the NIH, St. Jude Medical, Respicardia, Pfizer, and Medtronic; Tang received honoraria from HorizonCME as an ACC chapter meeting symposium speaker; Tang received travel expenses covered from Respicardia. Chantal Mathieu worked as a consultant for Eli Lilly and Company, Merck Sharp & Dome, Novartis Pharmaceuticals Corps., Novo Nordisk A/S, Sanofi, AstraZeneca Pharmaceuticals, Boehringer Ingelheim GmbH, Bristol-Meyers-Squibb Company, MannKind Corp., and Pfizer. Mathieu received grants from Eli Lilly Company, Merck Sharp & Dome, Novartis Pharmaceuticals Corp., Novo Nordisk A/S, and Sanofi. Frederik Verbrugge, Wilfried Mullens, Roman Vangoitsenhoven, and Bart Van der Schueren have no relevant disclosures.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wilson Tang.

Additional information

This article is part of the Topical Collection on Heart Failure Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbrugge, F.H., Vangoitsenhoven, R., Mullens, W. et al. SGLT-2 Inhibitors: Potential Novel Strategy to Prevent Congestive Heart Failure in Diabetes?. Curr Cardiovasc Risk Rep 9, 38 (2015). https://doi.org/10.1007/s12170-015-0467-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-015-0467-0

Keywords

Navigation