Skip to main content
Log in

A Critical Review on the Efficacy and Mechanism of Nanoparticle-Based Flocculants for Biodiesel Feedstock Production from Microalgae

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Microalgae harvesting includes conventional methods like centrifugation, sedimentation, and filtration, as well as advanced methods like flocculation, magnetic nanoparticle, and flotation. Biomass recovery using centrifugation is high but high gravitational force can alter the cell structure. Sedimentation is one of the most useful methods in wastewater microalgae harvesting, though it is applicable to large-cell microalgae (>70 μm). Filtration is a low-cost method and easy to process; however, fouling and clogging can result in low yield. Among several techniques, flocculation is one of the most effective and economical approaches for biomass harvesting. Nanomaterial-based flocculants are considered due to their efficiency and reusability. Nanoparticle-based flocculants have gained attention in recent years due to their unique properties, such as high surface area, small size, and enhanced reactivity. These nanoparticles can be engineered to interact with microalgal cells, causing agglomeration and facilitating the separation of biomass from the culture medium. Studies have demonstrated that using nanoparticle-based flocculants can significantly improve the efficiency of microalgae harvesting compared to traditional flocculation methods. This review emphasizes the mechanism of flocculation, types of flocculation, the dosages of flocculants, and the flocculation recovery efficiencies. The role of green routes in synthesizing nanoparticles for the advancement of flocculation technique is especially highlighted in this article for the sustainable biodiesel production from microalgae. Thorough evaluations, encompassing techno-economic and life cycle assessments, play a crucial role in appraising the economic feasibility and environmental ramifications of biofuels derived from microalgae. This article provides an overview of flocculation methods suitable for microalgal harvesting, their mechanisms, advantages, and drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chanana I, Sharma A, Kumar P, Kumar L Kulshreshtha, S Kumar S, Patel SKS (2023) Combustion and stubble burning: a major concern for the environment and human health. Fire 6:79. https://doi.org/10.3390/fire6020079

  2. Barkia I, Saari N, Manning SR (2019) Microalgae for high-value products towards human health and nutrition. Marine Drugs 17:304. https://doi.org/10.3390/md17050304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Demirbas MF, Balat M, Balat H (2009) Potential contribution of biomass to the sustainable energy development. Energ Convers Manage 50:1746–1760. https://doi.org/10.1016/j.enconman.2009.03.013

    Article  CAS  Google Scholar 

  4. Bahadar A, Bilal K (2013) Progress in energy from microalgae: a review. Renew Sust Energ Rev 27:128–148. https://doi.org/10.1016/j.rser.2013.06.029

    Article  CAS  Google Scholar 

  5. Voloshin RA, Rodionova MV, Zharmukhamedov SK, Nejat Veziroglu T, Allakhverdiev SI (2016) Review: biofuel production from plant and algal biomass. Int J Hydrog Energy 41:17257–17273. https://doi.org/10.1016/j.ijhydene.2016.07.084

    Article  CAS  Google Scholar 

  6. Prasad S, Singh A, Korres NE, Rathore D, Sevda S, Pant D (2020) Sustainable utilization of crop residues for energy generation: a life cycle assessment (Lca) perspective. Bioresour Technol 303:122964. https://doi.org/10.1016/j.biortech.2020.122964

    Article  CAS  PubMed  Google Scholar 

  7. Sathasivam R, Radhakrishnan R, Hashem A, Abd Allah EF (2019) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26:709–722. https://doi.org/10.1016/j.sjbs.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  8. Sun J, Jiang S, Yang L, Chu H, Peng BY, Xiao S, Wang Y, Zhou X, Zhang Y (2023) Microalgal wastewater recycling: suitability of harvesting methods and influence on growth mechanisms. Sci Total Environ 859:160237. https://doi.org/10.1016/j.scitotenv.2022.160237

    Article  CAS  PubMed  Google Scholar 

  9. Choi HJ (2015) Effect of eggshells for the harvesting of microalgae species. Biotechnol Biotechnol Equip 29:666–672. https://doi.org/10.1080/13102818.2015.1031177

    Article  Google Scholar 

  10. Uzoejinwa BB, He X, Wang S, El-Fatah Abomohra A, Hu Y, Wang Q (2018) Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide. Energy Converg Manag 163:468–492. https://doi.org/10.1016/j.enconman.2018.02.004

    Article  CAS  Google Scholar 

  11. Casanova LM, Mendes LBB, Corrêa TDS, Da Silva RB, Joao RR, Macrae A, Vermelho AB (2022) Development of microalgae biodiesel: current status and perspectives. Microorganisms1 1:34. https://doi.org/10.3390/microorganisms11010034

    Article  CAS  Google Scholar 

  12. Khan AA, Gul J, Naqvi SR, Ali I, Farooq W, Liaqat R, AlMohamadi H, Štěpanec L, Juchelková D (2022) Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater. Chemosphere 306:135565. https://doi.org/10.1016/j.chemosphere.2022.135565

    Article  CAS  PubMed  Google Scholar 

  13. Ermis H, Güven-Gülhan Ü, Çakır T, Altınbaş M (2022) Microalgae growth and diversity in anaerobic digestate compared to Synthetic Media. Biofuel Res J 9:1551–1561. https://doi.org/10.18331/brj2022.9.1.2

    Article  CAS  Google Scholar 

  14. Pandit PR, Fulekar MH, Karuna MS (2017) Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in acutodesmus obliquus and chlorella vulgaris. Environ Sci Pollut Res 24:13437–13451. https://doi.org/10.1007/s11356-017-8875-y

    Article  CAS  Google Scholar 

  15. Gregory J (2013) Flocculation fundamentals. J. Colloid Interface Sci 459–491. https://doi.org/10.1007/978-3-642-20665-8_17

  16. Hadiyanto H, Christwardana M, Widayat W, Jati AK, Laes SI (2021) Optimization of flocculation efficiency and settling time using chitosan and eggshell as bio-flocculant in Chlorella pyrenoidosa harvesting process. Environ Technol Innov:101959. https://doi.org/10.1016/j.eti.2021.101959

  17. Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnol 31:233–239. https://doi.org/10.1016/j.tibtech.2012.12.005

    Article  CAS  Google Scholar 

  18. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 16:71. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquac Eng 35:300–313. https://doi.org/10.1016/j.aquaeng.2006.04.001

    Article  Google Scholar 

  20. Wang S, Yerkebulan M, Abomohra AEF, El-Khodary S, Wang Q (2019) Microalgae harvest influences the energy recovery: a case study on chemical flocculation of scenedesmus obliquus for biodiesel and crude bio-oil production. Bioresour Technol 286:121371. https://doi.org/10.1016/j.biortech.2019.121371

    Article  CAS  PubMed  Google Scholar 

  21. Suparmaniam U, Lam MK, Uemura Y, Shuit SH, Lim JW, Show PL, Lee KT, Matsumura Y, Le PTK (2020) Flocculation of Chlorella vulgaris by shell waste-derived bioflocculants for biodiesel production: process optimization, characterization and kinetic studies. Sci Total Environ 702:134995. https://doi.org/10.1016/j.scitotenv.2019.134995

    Article  CAS  PubMed  Google Scholar 

  22. Aghbashlo M, Peng W, Tabatabaei M, Kalogirou SA, Soltanian S, Hosseinzadeh-Bandbafha H, Mahian O, Lam SS (2021) Machine learning technology in biodiesel research: a review. PECS 85:100904. https://doi.org/10.1016/j.pecs.2021.100904

    Article  Google Scholar 

  23. Muhammad G, Alam MA, Mofijur M, Jahirul MI, Lv Y, Xiong W, Ong HC, Xu J (2021) Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renew Sust Energ Rev 135:110209. https://doi.org/10.1016/j.rser.2020.110209

    Article  Google Scholar 

  24. Li S, Hu T, Xu Y, Wang J, Chu R, Yin Z, Mo F, Zhu L (2020) A review on flocculation as an efficient method to harvest energy microalgae: mechanisms, performances, influencing factors and perspectives. Renew Sust Energy Rev 131:110005. https://doi.org/10.1016/j.rser.2020.110005

    Article  CAS  Google Scholar 

  25. Chatsungnoen T, Chisti Y (2016) Harvesting microalgae by flocculation–sedimentation. Algal Res 13:271–283. https://doi.org/10.1016/j.algal.2015.12.009

    Article  Google Scholar 

  26. Leite L, Daniel LA (2020) Optimization of microalgae harvesting by sedimentation induced by high ph. Water Sci Technol 82:1227–1236. https://doi.org/10.2166/wst.2020.106

    Article  CAS  PubMed  Google Scholar 

  27. Oliveira CYBD, Viegas TL, Lopes RG, Cella H, Menezes RS, Soares AT, Antoniosi Filho NR, Derner RB (2020) A comparison of harvesting and drying methodologies on fatty acids composition of the green microalga Scenedesmus obliquus. Biomass Bioenergy 132:105437. https://doi.org/10.1016/j.biombioe.2019.105437

    Article  CAS  Google Scholar 

  28. Abu-Shamleh A, Najjar YSH (2020) Optimization of mechanical harvesting of microalgae by centrifugation for biofuels production. Biomass Bioenergy 143:105877. https://doi.org/10.1016/j.biombioe.2020.105877

    Article  CAS  Google Scholar 

  29. Vasistha S, Khanra A, Rai MP (2021) Influence of microalgae-ZnO nanoparticle association on sewage wastewater towards efficient nutrient removal and improved biodiesel application: an integrated approach. JWPE 39:101711. https://doi.org/10.1016/j.jwpe.2020.101711

    Article  Google Scholar 

  30. Kyzas G, Matis K (2018) Flotation in water and wastewater treatment. Processes 6:116. https://doi.org/10.3390/pr6080116

    Article  CAS  Google Scholar 

  31. Hosseinzadeh Bandbafha H, Li C, Chen X, Peng W, Aghbashlo M, Lam SS, Tabatabaei M (2022) Managing the hazardous waste cooking oil by conversion into bioenergy through the application of waste-derived green catalysts: a review. J Hazard Mater 424:127636. https://doi.org/10.1016/j.jhazmat.2021.127636

    Article  CAS  PubMed  Google Scholar 

  32. Singh G, Patidar SK (2018) Microalgae harvesting techniques: a review. J Environ Manage 217:499–508. https://doi.org/10.1016/j.jenvman.2018.04.010

    Article  PubMed  Google Scholar 

  33. Zhang Y, Jiang H, Bian K, Wang H, Wang C (2021) A critical review of control and removal strategies for microplastics from aquatic environments. J Environ Chem Eng 9:105463. https://doi.org/10.1016/j.jece.2021.105463

    Article  CAS  Google Scholar 

  34. Trovão M, Pereira H, Silva J, Páramo J, Quelhas P, Santos T, Silva JT, Machado A, Gouveia L, Barreira L, Varela J (2019) Growth performance, biochemical composition and sedimentation velocity of Tetraselmis sp. CTP4 under different salinities using low-cost lab- and pilot-scale systems. Heliyon 5:01553. https://doi.org/10.1016/j.heliyon.2019.e01553

    Article  Google Scholar 

  35. Liu Z, Smith SR (2021) Enzyme recovery from biological wastewater treatment. Waste Biomass Valorization 12:4185–4211. https://doi.org/10.1007/s12649-020-01251-7

    Article  CAS  Google Scholar 

  36. Zhu L, Li Z, Hiltunen E (2018) Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnol Biofuels 11:183. https://doi.org/10.1186/s13068-018-1183-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao Z, Blockx J, Muylaert K, Thielemans W, Szymczyk A, Vankelecom IFJ (2022) Exploiting flocculation and membrane filtration synergies for highly energy-efficient, high-yield microalgae harvesting. Sep Purif Technol 296:121386. https://doi.org/10.1016/j.seppur.2022.121386

    Article  CAS  Google Scholar 

  38. Jiang S, Chu H, Sun J, Zhang W, Yang M, Chen Y, Zhou X, Zhang Y (2023) Membrane fouling behavior and its control in a vibration membrane filtration system related to EOM secreted by microalgae. J Membr Sci 669:121296. https://doi.org/10.1016/j.memsci.2022.121296

    Article  CAS  Google Scholar 

  39. Babel S, Takizawa S (2010) Microfiltration membrane fouling and cake behavior during algal filtration. Desalination 261:46–51. https://doi.org/10.1016/j.desal.2010.05.038

    Article  CAS  Google Scholar 

  40. Ghazvini M, Kavosi M, Sharma R, Kim M (2022) A review on mechanical-based microalgae harvesting methods for biofuel production. Biomass Bioenergy 158:106348. https://doi.org/10.1016/j.biombioe.2022.106348

    Article  CAS  Google Scholar 

  41. Zhao Z, Mertens M, Li Y, Muylaert K, Vankelecom IFJ (2020) A highly efficient and energy-saving magnetically induced membrane vibration system for harvesting microalgae. Bioresour Technol 300:122688. https://doi.org/10.1016/j.biortech.2019.122688

    Article  CAS  PubMed  Google Scholar 

  42. Demir Yilmaz I, Ftouhi MS, Balayssac S, Guiraud P, Coudret C, Formosa Dague C (2023) Bubble functionalization in flotation process improve microalgae harvesting. J Chem Eng 452:139349. https://doi.org/10.1016/j.cej.2022.139349

    Article  CAS  Google Scholar 

  43. Demir I, Besson A, Guiraud P, Formosa Dague C (2020) Towards a better understanding of microalgae natural flocculation mechanisms to enhance flotation harvesting efficiency. Water Sci Technol 82:1009–1024. https://doi.org/10.2166/wst.2020.177

    Article  CAS  PubMed  Google Scholar 

  44. Roy M, Mohanty K (2019) A comprehensive review on microalgal harvesting strategies: current status and future prospects. Algal Res 44:101683. https://doi.org/10.1016/j.algal.2019.101683

    Article  Google Scholar 

  45. Milledge JJ (2010) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41. https://doi.org/10.1007/s11157-010-9214-7

    Article  Google Scholar 

  46. Mubarak M, Shaija A, Suchithra TV (2019) Flocculation: an effective way to harvest microalgae for biodiesel production. J Environ Chem Eng 7:103221. https://doi.org/10.1016/j.jece.2019.103221

    Article  CAS  Google Scholar 

  47. Chen Q, Fan Q, Zhang Z, Mei Y, Wang H (2018) Effective in situ harvest of microalgae with bacterial cellulose produced by Gluconacetobacter xylinus. Algal Res 35:349–354. https://doi.org/10.1016/j.algal.2018.09.002

    Article  Google Scholar 

  48. Vandamme D, Foubert I, Fraeye I, Muylaert K (2012) Influence of organic matter generated by chlorella vulgaris on five different modes of flocculation. Bioresour Technol 124:508–511. https://doi.org/10.1016/j.biortech.2012.08.121

    Article  CAS  PubMed  Google Scholar 

  49. Cheng J, Xu J, Huang Y, Li Y, Zhou J, Cen K (2015) Growth optimisation of microalga mutant at high CO2 concentration to purify undiluted anaerobic digestion effluent of swine manure. Bioresour Technol 177:240–246. https://doi.org/10.1016/j.biortech.2014.11.099

    Article  CAS  PubMed  Google Scholar 

  50. Yin Z, Zhang L, Hu D, Li S, Chu R, Liu C, Lv Y, Bao J, Xiang M, Zhu L (2021) Biocompatible magnetic flocculant for efficient harvesting of microalgal cells: isotherms, mechanisms and water recycling. Sep Purif Technol 279:119679. https://doi.org/10.1016/j.seppur.2021.119679

    Article  CAS  Google Scholar 

  51. Khan S, Naushad M, Iqbal J, Bathula C, Sharma G (2022) Production and harvesting of microalgae and an efficient operational approach to biofuel production for a sustainable environment. Fuel 311:122543. https://doi.org/10.1016/j.fuel.2021.122543

    Article  CAS  Google Scholar 

  52. Bakhtiari H, Taghavi L, Mirbagheri SA, Rajaee T, Ramezani M (2022) Effective harvesting of the microalgae Cyclotella via autoflocculation and bioflocculation. IJEST 19:6421–6428. https://doi.org/10.1007/s13762-021-03834-w

    Article  CAS  Google Scholar 

  53. Nguyen TDP, Tran TNT, Le TVA, Nguyen Phan TX, Show PL, Chia SR (2019) Auto-flocculation through cultivation of Chlorella vulgaris in seafood wastewater discharge: influence of culture conditions on microalgae growth and nutrient removal. J Biosci Bioeng 127:492–498. https://doi.org/10.1016/j.jbiosc.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  54. Young P, Phasey J, Wallis I, Vandamme D, Fallowfield H (2021) Autoflocculation of microalgae, via magnesium hydroxide precipitation, in a high rate algal pond treating municipal wastewater in the South Australian Riverland. Algal Res 59:102418. https://doi.org/10.1016/j.algal.2021.102418

    Article  Google Scholar 

  55. Chokshi K, Pancha I, Trivedi K, George B, Maurya R, Ghosh A, Mishra S (2015) Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions. Bioresour Technol 180:162–171. https://doi.org/10.1016/j.biortech.2014.12.102

    Article  CAS  PubMed  Google Scholar 

  56. Yang L, Zhang H, Cheng S, Zhang W, Zhang X (2020) Enhanced microalgal harvesting using microalgae-derived extracellular polymeric substance as flocculation aid. ACS Sustain Chem Eng 8:4069–4075. https://doi.org/10.1021/acssuschemeng.9b06156

    Article  CAS  Google Scholar 

  57. Matter RAI, Darwesh MO, El Baz KF (2016) Using the natural polymer chitosan in harvestingcenedesmus species under different concentrations and cultural ph values. IJPBS 7. https://doi.org/10.22376/ijpbs.2016.7.4.b254-260

  58. Aljuboori AH, Uemura Y, Thanh NT (2016) Flocculation and mechanism of self-flocculating lipid producer microalga Scenedesmus quadricauda for biomass harvesting. Biomass Bioenergy 93:38–42. https://doi.org/10.1016/j.biombioe.2016.06.013

    Article  CAS  Google Scholar 

  59. Ummalyma SB, Mathew AK, Pandey A, Sukumaran RK (2016) Harvesting of microalgal biomass: efficient method for flocculation through pH modulation. Bioresour Technol 213:216–221. https://doi.org/10.1016/j.biortech.2016.03.114

    Article  CAS  PubMed  Google Scholar 

  60. Pérez L, Salgueiro JL, Maceiras R, Cancela Á, Sánchez Á (2017) An effective method for harvesting of marine microalgae: pH induced flocculation. Biomass Bioenergy 97:20–26. https://doi.org/10.1016/j.biombioe.2016.12.010

    Article  CAS  Google Scholar 

  61. Tran NAT, Seymour JR, Siboni N, Evenhuis CR, Tamburic B (2017) Photosynthetic carbon uptake induces autoflocculation of the marine microalga Nannochloropsis oculata. Algal Res 26:302–311. https://doi.org/10.1016/j.algal.2017.08.005

    Article  Google Scholar 

  62. Zhang B, Liu L, Lin X, Xu Z, Luo W, Luo L (2022) Response surface methodology to optimize self-flocculation harvesting of microalgae Desmodesmus sp. CHX1. Environ Technol 43:2647–2655. https://doi.org/10.1080/09593330.2021.1892831

    Article  CAS  PubMed  Google Scholar 

  63. Blockx J, Verfaillie A, Thielemans W, Muylaert K (2018) Unravelling the mechanism of chitosan-driven flocculation of microalgae in seawater as a function of ph. ACS Sustain Chem Eng 6:11273–11279. https://doi.org/10.1021/acssuschemeng.7b04802

    Article  CAS  Google Scholar 

  64. Chua ET, Shekh AY, Eltanahy E, Thomas Hall SR, Schenk PM (2020) Effective harvesting of nannochloropsis microalgae using mushroom chitosan: a pilot-scale study. Front Bioeng Biotechnol 8:771. https://doi.org/10.3389/fbioe.2020.00771

    Article  PubMed  PubMed Central  Google Scholar 

  65. Monisha Miriam LR, Kings AJ, Raj RE, Shyam KP, Adhi Viswanathan M (2023) Process optimization of lipid extraction from microalgae Aphanothece halophytica in wet and dry conditions. BioEnergy Res 16:1051–1064. https://doi.org/10.1007/s12155-022-10464-8

    Article  CAS  Google Scholar 

  66. You Y, Yang L, Sun X, Chen H, Wang H, Wang N, Li S (2022) Synthesized cationic starch grafted tannin as a novel flocculant for efficient microalgae harvesting. J lean Prod 344:131042. https://doi.org/10.1016/j.jclepro.2022.131042

    Article  CAS  Google Scholar 

  67. Kumar N, Banerjee C, Jagadevan S (2020) Cationically functionalized dextrin polymer as an efficient flocculant for harvesting microalgae. Energy Rep 6:2803–2815. https://doi.org/10.1016/j.egyr.2020.09.040

    Article  Google Scholar 

  68. Mi Y, Yang S, Chen J, Li Z, Dong L, Wei Q, Tang Y, Ma X (2022) Carbon-induced effective lipid accumulation and self-flocculation for biofuel production of Tetradesmus obliquus FACHB-12. J Clean Prod 355:131813. https://doi.org/10.1016/j.jclepro.2022.131813

    Article  CAS  Google Scholar 

  69. Iglesias S, Míguez C, Sánchez A, Cancela A, Álvarez X (2022) Thalassiosira pseudonana and Skeletonema costatum biomass optimization: cultivation, harvesting, extraction of oils and biodiesel and pelletization of the residue. J Sea Res 187:102243. https://doi.org/10.1016/j.seares.2022.102243

    Article  Google Scholar 

  70. Machado CA, Esteves AF, Pires JCM (2022) Optimization of microalgal harvesting with inorganic and organic flocculants using factorial design of experiments. Processes 10:1124. https://doi.org/10.3390/pr10061124

    Article  CAS  Google Scholar 

  71. Patel AK, Kumar P, Chen CW, Tambat VS, Nguyen TB, Hou CY, Chang JS, Dong CD, Singhania RR (2022) Nano magnetite assisted flocculation for efficient harvesting of lutein and lipid producing microalgae biomass. Bioresour Technol 363:128009. https://doi.org/10.1016/j.biortech.2022.128009

    Article  CAS  PubMed  Google Scholar 

  72. Menegazzo ML, Nascimento VM, Hestekin CN, Hestekin JA, Fonseca GG (2022) Evaluation of Chlorella sorokiniana cultivated in outdoor photobioreactors for biodiesel production. Biofuels 13:483–488. https://doi.org/10.1080/17597269.2020.1763094

    Article  CAS  Google Scholar 

  73. Taghavijeloudar M, Yaqoubnejad P, Ahangar AK, Rezania S (2023) A rapid, efficient and eco-friendly approach for simultaneous biomass harvesting and bioproducts extraction from microalgae: dual flocculation between cationic surfactants and bio-polymer. Sci Total Environ 854:158717. https://doi.org/10.1016/j.scitotenv.2022.158717

    Article  CAS  PubMed  Google Scholar 

  74. Das P, Thaher MI, Abdul Hakim MAQM, Al-Jabri HMSJ, Alghasal GSHS (2016) Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media. Bioresour Technol 216:824–829. https://doi.org/10.1016/j.biortech.2016.06.014

    Article  CAS  PubMed  Google Scholar 

  75. Mathimani T, Bhumathi D, Shan Ahamed T, Dineshbabu G, Deviram G, Uma L, Prabaharan D (2017) Semicontinuous outdoor cultivation and efficient harvesting of marine Chlorella vulgaris BDUG 91771 with minimum solid co-precipitation and high floc recovery for biodiesel. Energy Convers Manag 149:13–25. https://doi.org/10.1016/j.enconman.2017.06.077

    Article  CAS  Google Scholar 

  76. De Jesus CS, De Jesus AD, Rodriguez MB, Menezes Filho JA, Costa JAV, De Souza Ferreira E, Druzian JI (2019) Pilot-scale isolation and characterization of extracellular polymeric substances (Eps) from cell-free medium of Spirulina s p. LEB-18 cultures under outdoor conditions. Int J Biol Macromol 124:1106–1114. https://doi.org/10.1016/j.ijbiomac.2018.12.016

    Article  CAS  PubMed  Google Scholar 

  77. Wang K, Khoo KS, Chew KW, Selvarajoo A, Chen WH, Chang JS, Show PL (2021) Microalgae: the future supply house of biohydrogen and biogas. Front Energy Res 9:660399. https://doi.org/10.3389/fenrg.2021.660399

    Article  Google Scholar 

  78. Marinho YF, Oliveira CY, Malafaia CB, Cahú TB, Oliveira AP, Napoleão TH, Bezerra RS, Paiva PG, Gálvez AO (2022) A circular approach for the efficient recovery of astaxanthin from Haematococcus pluvialis biomass harvested by flocculation and water reusability. Sci Total Environ 841:156795. https://doi.org/10.1016/j.scitotenv.2022.156795

    Article  CAS  PubMed  Google Scholar 

  79. Pei XY, Ren HY, Liu BF (2021) Flocculation performance and mechanism of fungal pellets on harvesting of microalgal biomass. Bioresour Technol 321:124463. https://doi.org/10.1016/j.biortech.2020.124463

    Article  CAS  PubMed  Google Scholar 

  80. Jiang J, Jin W, Tu R, Han S, Ji Y, Zhou X (2021) Harvesting of microalgae Chlorella pyrenoidosa by bio-flocculation with bacteria and filamentous fungi. Waste Biomass Valorization 12:145–154. https://doi.org/10.1007/s12649-020-00979-6

    Article  CAS  Google Scholar 

  81. Ndikubwimana T, Zeng X, Murwanashyaka T, Manirafasha E, He N, Shao W, Lu Y (2016) Harvesting of freshwater microalgae with microbial bioflocculant: a pilot-scale study. Biotechnol Biofuels 9:47. https://doi.org/10.1186/s13068-016-0458-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li Y, Xu Y, Liu L, Jiang X, Zhang K, Zheng T, Wang H (2016) First evidence of bioflocculant from Shinella albus with flocculation activity on harvesting of Chlorella vulgaris biomass. Bioresour Technol 218:807–815. https://doi.org/10.1016/j.biortech.2016.07.034

    Article  CAS  PubMed  Google Scholar 

  83. Li Y, Xu Y, Zheng T, Wang H (2017) Flocculation mechanism of the actinomycete Streptomyces sp. Hsn06 on Chlorella vulgaris. Bioresour Technol 239:137–143. https://doi.org/10.1016/j.biortech.2017.05.028

    Article  CAS  PubMed  Google Scholar 

  84. Chauhan A, Basniwal RK, Gurnani M, Rath P, Ranjan A, Rajput VD, Jindal T, Bauer T, Zamulina I, Chernikova N (2022) Environmental emissions of nanoparticles. In: Sustainable Plant Nutrition in a Changing World, vol 245–279. https://doi.org/10.1007/978-3-030-97389-6_11

    Chapter  Google Scholar 

  85. Biofuels Engineering Process Technology (2008) Focus on catalysts. 2008:8. https://doi.org/10.1016/s1351-4180(08)70584-1

  86. Arya I, Poona A, Dikshit PK, Pandit S, Kumar J, Singh HN, Jha NK, Rudayni HA, Chaudhary AA, Kumar S (2021) Current trends and future prospects of nanotechnology in biofuel production. Catalysts 11:1308. https://doi.org/10.3390/catal11111308

    Article  CAS  Google Scholar 

  87. Gan Y, Qiao L (2011) Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles. Combust Flame 158:354–368. https://doi.org/10.1016/j.combustflame.2010.09.005

    Article  CAS  Google Scholar 

  88. Rath P, Ranjan A, Chauhan A, Basniwal RK, Rajput VD, Sushkova S, Minkina T, Jindal T, Balyazin-Parfenov IV, Deryabkina I (2022) Ecotoxicology and toxicology of metal-based nanoparticles. In: Sustainable Plant Nutrition in a Changing World, vol 281–307. https://doi.org/10.1007/978-3-030-97389-6_12

    Chapter  Google Scholar 

  89. Liu Y, Jin W, Zhou X, Han SF, Tu R, Feng X, Jensen PD, Wang Q (2019) Efficient harvesting of Chlorella pyrenoidosa and Scenedesmus obliquus cultivated in urban sewage by magnetic flocculation using nano-Fe3O4 coated with polyethyleneimine. Bioresour Technol 290:121771. https://doi.org/10.1016/j.biortech.2019.121771

    Article  CAS  PubMed  Google Scholar 

  90. Savvidou MG, Dardavila MM, Georgiopoulou I, Louli V, Stamatis H, Kekos D, Voutsas E (2021) Optimization of microalga Chlorella vulgaris magnetic harvesting. Nanomaterials 11:1614. https://doi.org/10.3390/nano11061614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Khanra A, Vasistha S, Kumar P, Rai MP (2020) Role of C/N ratio on microalgae growth in mixotrophy and incorporation of titanium nanoparticles for cell flocculation and lipid enhancement in economical biodiesel application. Biotech 10. https://doi.org/10.1007/s13205-020-02323-0

  92. Han SF, Jin W, Tu R, Gao SH, Zhou X (2020) Microalgae harvesting by magnetic flocculation for biodiesel production: current status and potential. World J Microbiol Biotechnol 36. https://doi.org/10.1007/s11274-020-02884-5

  93. Fathy W, Elsayed K, Essawy E, Tawfik E, Zaki A, Abdelhameed MS, Hammouda O (2020) Biosynthesis of silver nanoparticles from synechocystis sp to be used as a flocculant agent with different microalgae strains. Curr Nanomater 5:175–187. https://doi.org/10.2174/2468187310999200605161200

    Article  CAS  Google Scholar 

  94. Wang T, Yang WL, Hong Y, Hou YL (2016) Magnetic nanoparticles grafted with amino-riched dendrimer as magnetic flocculant for efficient harvesting of oleaginous microalgae. J Chem Eng 297:304–314. https://doi.org/10.1016/j.cej.2016.03.038

    Article  CAS  Google Scholar 

  95. Guldhe A, Singh B, Rawat I, Permaul K, Bux F (2015) Biocatalytic conversion of lipids from microalgae Scenedesmus obliquus to biodiesel using Pseudomonas fluorescens lipase. Fuel 147:117–124. https://doi.org/10.1016/j.fuel.2015.01.049

    Article  CAS  Google Scholar 

  96. Duman F, Sahin U, Atabani AE (2019) Harvesting of blooming microalgae using green synthetized magnetic maghemite (Γ-fe2o3) nanoparticles for biofuel production. Fuel 256:115935. https://doi.org/10.1016/j.fuel.2019.115935

    Article  CAS  Google Scholar 

  97. Goh BHH, Ong HC, Cheah MY, Chen WH, Yu KL, Mahlia TMI (2019) Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew Sust Energy Rev 107:59–74. https://doi.org/10.1016/j.rser.2019.02.012

    Article  CAS  Google Scholar 

  98. Merlo S, Gabarrell Durany X, Pedroso Tonon A, Rossi S (2021) Marine microalgae contribution to sustainable development. Water 13:1373. https://doi.org/10.3390/w13101373

    Article  CAS  Google Scholar 

  99. Chew KW, Khoo KS, Foo HT, Chia SR, Walvekar R, Lim SS (2021) Algae utilization and its role in the development of green cities. Chemosphere 268:129322. https://doi.org/10.1016/j.chemosphere.2020.129322

    Article  CAS  PubMed  Google Scholar 

  100. Aghbashlo M, Hosseinzadeh Bandbafha H, Shahbeik H, Tabatabaei M (2022) The role of sustainability assessment tools in realizing bioenergy and bioproduct systems. Biofuel Res J 9:1697–1706. https://doi.org/10.18331/brj2022.9.3.5

    Article  CAS  Google Scholar 

  101. Puricelli S, Cardellini G, Casadei S, Faedo D, van den Oever GM (2021) A review on biofuels for light-duty vehicles in Europe. Renew Sust Energy Rev 137:110398. https://doi.org/10.1016/j.rser.2020.110398

    Article  CAS  Google Scholar 

  102. Saranya G, Ramachandra TV (2020) Life cycle assessment of biodiesel from estuarine microalgae. Energy Convers Manag X 8:100065. https://doi.org/10.1016/j.ecmx.2020.100065

    Article  CAS  Google Scholar 

  103. Hoang AT, Sirohi R, Pandey A, Nižetić S, Lam SS, Chen WH, Luque R, Thomas S, Pham VV (2022) Biofuel production from microalgae: challenges and chances. Phytochem Rev. https://doi.org/10.1007/s11101-022-09819-y

  104. Rakesh S, Saxena S, Dhar DW, Prasanna R, Saxena AK (2013) Comparative evaluation of inorganic and organic amendments for their flocculation efficiency of selected microalgae. J Appl Phycol 26:399–406. https://doi.org/10.1007/s10811-013-0114-4

    Article  CAS  Google Scholar 

  105. El Gaayda J, Titchou FE, Oukhrib R, Yap PS, Liu T, Hamdani M, Ait Akbour R (2021) Natural flocculants for the treatment of wastewaters containing dyes or heavy metals: a state-of-the-art review. J Environ Chem Eng 9:106060. https://doi.org/10.1016/j.jece.2021.106060

    Article  CAS  Google Scholar 

  106. Osman AI, Mehta N, Elgarahy AM, Al-Hinai A, Al-Muhtaseb AH, Rooney DW (2021) Conversion of biomass to biofuels and life cycle assessment: a review. Environ Chem Lett 19:4075–4118. https://doi.org/10.1007/s10311-021-01273-0

    Article  CAS  Google Scholar 

  107. Huang R, Li J, Tang Y, Song W, Yu Y, Yang W, Cheng J (2022) Comparative life-cycle assessment of microalgal biodiesel production via various emerging wet scenarios: energy conversion characteristics and environmental impacts. Energy Convers Manag 257:115427. https://doi.org/10.1016/j.enconman.2022.115427

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Founder President of Amity University, Dr. Ashok K Chauhan, for his constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhishek Chauhan or Tanu Jindal.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahariya, R., Chauhan, A., Ranjan, A. et al. A Critical Review on the Efficacy and Mechanism of Nanoparticle-Based Flocculants for Biodiesel Feedstock Production from Microalgae. Bioenerg. Res. 17, 1065–1079 (2024). https://doi.org/10.1007/s12155-023-10672-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10672-w

Keywords

Navigation