Skip to main content

Advertisement

Log in

Anaerobic Digestion: Advance Techniques for Enhanced Biomethane/Biogas Production as a Source of Renewable Energy

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This is a prime time to develop and implement the “waste to energy” projects across the globe to attain a sustainable environment. Anaerobic digestion (AD) has attracted the scientific community due to its simplicity and easiness to handle, and has the potential to utilize any kind of organic waste to produce a mixture of combustible gases, i.e., biogas and digested slurry, which has further applications in agriculture, solid biofuels, and purification. The process, in turn, reduces the local waste and helps in recycling in a manner that reduces greenhouse gas (GHG) emission, conserves the resources, and establishes a circular economy in the time of undetermined future for the production of energy and safe disposal of the waste. However, the conventional processes encounter with the low biogas yield and long retention time, which discourage the developers. To enhance biogas yield and quality, the momentum of research has increased towards implementation of advanced techniques for development of efficient processes. The present article summarizes the effect of different operational parameters on AD and impact of advanced techniques for enhanced biomethane/biogas. The article further covers the life cycle assessment (LCA) and techno-economic aspect (TCA) of the AD process. This will provide the comparison of different advanced techniques in terms of biomethane/biogas yield.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

This declaration is not applicable.

References

  1. International Energy Agency (2022) World Energy Outlook 2022. https://www.iea.org/reports/world-energy-outlook-2022. Accessed 15 May 2023.

  2. Dincer I, Aydin MI (2023) New paradigms in sustainable energy systems with hydrogen. Energy Convers Manag 283:116950. https://doi.org/10.1016/j.enconman.2023.116950

    Article  CAS  Google Scholar 

  3. Gupta P, Kurien C, Mittal M (2023) Biogas (a promising bioenergy source): a critical review on the potential of biogas as a sustainable energy source for gaseous fuelled spark ignition engines. Int J Hydrogen Energy 48:7747–7769. https://doi.org/10.1016/j.ijhydene.2022.11.195

    Article  CAS  Google Scholar 

  4. Jiang X, Lyu Q, Bi L, Liu Y, Xie Y, Ji G, Huan C, Xu L, Yan Z (2022) Improvement of sewage sludge anaerobic digestion through synergistic effect combined trace elements enhancer with enzyme pretreatment and microbial community response. Chemosphere 286:131356. https://doi.org/10.1016/j.chemosphere.2021.131356

    Article  CAS  PubMed  Google Scholar 

  5. Kaza S, Yao LC, Bhada-Tata P, Van Woerden F (2018) What a waste 2.0. What a waste 20: a global snapshot of solid waste management to 2050 1–297. https://doi.org/10.1596/978-1-4648-1329-0.

  6. Srivastava RK, Shetti NP, Reddy KR, Nadagouda MN, Badawi M, Bonilla-PetricioletTejraj A, Aminabhavi TM (2023) Valorization of biowastes for clean energy production, environmental depollution and soil fertility. J Environ Manage 332:117410. https://doi.org/10.1016/j.jenvman.2023.117410

    Article  CAS  PubMed  Google Scholar 

  7. Vijin Prabhu A, Manimaran R, Antony Raja S, Jeba P (2020) Biogas production from anaerobic co-digestion of Prosopis juliflora pods with water hyacinth, dry leaves, and cow manure. Energy Sources Part A: Recover Util Environ Eff 42:375–386. https://doi.org/10.1080/15567036.2019.1587084

    Article  CAS  Google Scholar 

  8. Emebu S, Pecha J, Janáčová D (2022) Review on anaerobic digestion models: Model classification & elaboration of process phenomena. Renew Sustain Energy Rev 160:112288. https://doi.org/10.1016/J.RSER.2022.112288

    Article  CAS  Google Scholar 

  9. Náthia-Neves G, Berni M, Dragone G, Mussatto SI, Forster-Carneiro T (2018) Anaerobic digestion process: technological aspects and recent developments. Int J Environ Sci Technol 15:2033–2046. https://doi.org/10.1007/s13762-018-1682-2

    Article  CAS  Google Scholar 

  10. Saravanan A, Senthil Kumar P, Rangasamy G, Hariharan R, Hemavathy RV, Deepika PD, Anand K, Karthika S (2023) Strategies for enhancing the efficacy of anaerobic digestion of food industry wastewater: an insight into bioreactor types, challenges, and future scope. Chemosphere 310:136856. https://doi.org/10.1016/j.chemosphere.2022.136856

    Article  CAS  PubMed  Google Scholar 

  11. Truong MV, Nguyen LN, Li K, Fu Q, Johir MAH, Fontana A, Nghiem LD (2020) Biomethane production from anaerobic co-digestion and steel-making slag: a new waste-to-resource pathway. Sci Total Environ 738:139764. https://doi.org/10.1016/j.scitotenv.2020.139764

    Article  CAS  PubMed  Google Scholar 

  12. Rocamora I, Wagland ST, Villa R, Simpson EW, Fernández O, Bajón-Fernández Y (2020) Dry anaerobic digestion of organic waste: a review of operational parameters and their impact on process performance. Bioresour Technol 299:122681. https://doi.org/10.1016/j.biortech.2019.122681

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Hu Y, Wang S, Wu G, Zhan X (2023) A critical review on dry anaerobic digestion of organic waste: characteristics, operational conditions, and improvement strategies. Renew Sustain Energy Rev 176:113208. https://doi.org/10.1016/j.rser.2023.113208

    Article  CAS  Google Scholar 

  14. Agyeman FO, Tao W (2014) Anaerobic co-digestion of food waste and dairy manure: effects of food waste particle size and organic loading rate. J Environ Manage 133:268–274. https://doi.org/10.1016/j.jenvman.2013.12.016

    Article  CAS  PubMed  Google Scholar 

  15. Meegoda JN, Li B, Patel K, Wang LB (2018) A review of the processes, parameters, and optimization of anaerobic digestion. Int J Environ Res Public Health 15:2224. https://doi.org/10.3390/ijerph15102224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yadav M, Balan V, Varjani S, Tyagi VK, Chaudhary G, Pareek N, Vivekanand V (2022) Multidisciplinary pretreatment approaches to improve the bio-methane production from lignocellulosic biomass. Bioenerg Res 16:228–247. https://doi.org/10.1007/s12155-022-10489-z

    Article  CAS  Google Scholar 

  17. Haffiez N, Chung TH, Zakaria BS, Shahidi M, Mezbahuddin S, Hai FI, Dhar BR (2022) A critical review of process parameters influencing the fate of antibiotic resistance genes in the anaerobic digestion of organic waste. Bioresour Technol 354:127189. https://doi.org/10.1016/j.biortech.2022.127189

    Article  CAS  PubMed  Google Scholar 

  18. Latif MA, Mehta CM, Batstone DJ (2017) Influence of low pH on continuous anaerobic digestion of waste activated sludge. Water Res 113:42–49. https://doi.org/10.1016/j.watres.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  19. Panigrahi S, Dubey BK (2019) A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew Energy 143:779–797

    Article  CAS  Google Scholar 

  20. Rabii A, Aldin S, Dahman Y, Elbeshbishy E (2019) A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration. Energies 12. https://doi.org/10.3390/en12061106.

  21. Chow WL, Chong S, Lim JW, Chan YJ, Chong MF, Tiong TJ, Chin JK, Pan GT (2020) Anaerobic co-digestion of wastewater sludge: a review of potential co-substrates and operating factors for improved methane yield. Processes 8:39. https://doi.org/10.3390/pr8010039

    Article  CAS  Google Scholar 

  22. Ho D, Jensen P, Batstone D (2014) Effects of temperature and hydraulic retention time on acetotrophic pathways and performance in high-rate sludge digestion. Environ Sci Technol 48:6468–6476. https://doi.org/10.1021/es500074j

    Article  CAS  PubMed  Google Scholar 

  23. Kim HW, Nam JY, Shin HS (2011) A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system. Bioresour Technol 102:7272–7279. https://doi.org/10.1016/j.biortech.2011.04.088

    Article  CAS  PubMed  Google Scholar 

  24. Yu D, Kurola JM, Lähde K, Kymäläinen M, Sinkkonen A, Romantschuk M (2014) Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes. J Environ Manage 143:54. https://doi.org/10.1016/j.jenvman.2014.04.025

    Article  CAS  PubMed  Google Scholar 

  25. Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555

    Article  CAS  Google Scholar 

  26. Kothari R, Pandey AK, Kumar S, Tyagi VV, Tyagi SK (2014) Different aspects of dry anaerobic digestion for bio-energy: an overview. Renew Sustain Energy Rev 39:174–195. https://doi.org/10.1016/j.rser.2014.07.011

    Article  CAS  Google Scholar 

  27. Chatterjee B, Mazumder D (2019) Role of stage-separation in the ubiquitous development of anaerobic digestion of organic fraction of municipal solid waste: a critical review. Renew Sustain Energy Rev 104:439–469. https://doi.org/10.1016/j.rser.2019.01.026

    Article  CAS  Google Scholar 

  28. Matheri AN, Sethunya VL, Belaid M, Muzenda E (2018) Analysis of the biogas productivity from dry anaerobic digestion of organic fraction of municipal solid waste. Renew Sustain Energy Rev 81:2328–2334. https://doi.org/10.1016/j.rser.2017.06.041

    Article  CAS  Google Scholar 

  29. Kumar A, Samadder SR (2020) Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: a review. Energy 197:117253. https://doi.org/10.1016/j.energy.2020.117253

    Article  CAS  Google Scholar 

  30. Wang X, Yang G, Feng Y, Ren G, Han X (2012) Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour Technol 120:78–83. https://doi.org/10.1016/j.biortech.2012.06.058

    Article  CAS  PubMed  Google Scholar 

  31. Boonnorat J, Kanyatrakul A, Prakhongsak A, Honda R, Panichnumsin P, Boonapatcharoen N (2019) Effect of hydraulic retention time on micropollutant biodegradation in activated sludge system augmented with acclimatized sludge treating low-micropollutants wastewater. Chemosphere 230:606–615. https://doi.org/10.1016/j.chemosphere.2019.05.039

    Article  CAS  PubMed  Google Scholar 

  32. Zahedi S, Rivero M, Solera R, Perez M (2018) Mesophilic anaerobic co-digestion of sewage sludge with glycerine: effect of solids retention time. Fuel 215:285–289. https://doi.org/10.1016/j.fuel.2017.11.007

    Article  CAS  Google Scholar 

  33. Manyapu V, Kumar A, Kumar R (2023) Psychrophilic biomethanation for enhanced bioenergy production in cold regions. Clean Technol Environ Policy 25:645–660. https://doi.org/10.1007/s10098-021-02223-8

    Article  CAS  Google Scholar 

  34. Rusín J, Chamrádová K, Basinas P (2021) Two-stage psychrophilic anaerobic digestion of food waste: comparison to conventional single-stage mesophilic process. Waste Manage 119:172–182. https://doi.org/10.1016/j.wasman.2020.09.039

    Article  CAS  Google Scholar 

  35. Karthikeyan OP, Visvanathan C (2013) Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Rev Environ Sci Biotechnol 12:257–284

    Article  CAS  Google Scholar 

  36. Van DP, Fujiwara T, Tho BL, Toan PPS, Minh GH (2020) A review of anaerobic digestion systems for biodegradable waste: configurations, operating parameters, and current trends. Environ Eng Res 25:1–17. https://doi.org/10.4491/eer.2018.334

    Article  Google Scholar 

  37. Shefali V (2002) Anaerobic digestion of biodegradable organics in municipal solid waste.

  38. Intanoo P, Chaimongkol P, Chavadej S (2016) Hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactors (UASB) with an emphasis on maximum hydrogen production. Int J Hydrogen Energy 41:6107–6114. https://doi.org/10.1016/j.ijhydene.2015.10.125

    Article  CAS  Google Scholar 

  39. Sarker S, Lamb JJ, Hjelme DR, Lien KM (2019) A review of the role of critical parameters in the design and operation of biogas production plants. Appl Sci 9:1915. https://doi.org/10.3390/app9091915

    Article  CAS  Google Scholar 

  40. Visvanathan CA (2012) Developments and future potentials of anaerobic membrane bioreactors (AnMBRs). Membr Water Treat 3:1–23. https://doi.org/10.12989/mwt.2012.3.1.001

    Article  Google Scholar 

  41. Paul S, Dutta A (2018) Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour Conserv Recycl 130:164–174. https://doi.org/10.1016/j.resconrec.2017.12.005

    Article  Google Scholar 

  42. Mirmohamadsadeghi S, Karimi K, Azarbaijani R, ParsaYeganeh L, Angelidaki I, Nizami AS, Bhat R, Dashora K, Vijay VK, Aghbashlo M, Gupta VK, Tabatabaei M (2021) Pretreatment of lignocelluloses for enhanced biogas production: a review on influencing mechanisms and the importance of microbial diversity. Renew Sustain Energy Rev 135:110173. https://doi.org/10.1016/j.rser.2020.110173

    Article  CAS  Google Scholar 

  43. Poddar BJ, Nakhate SP, Gupta RK, Chavan AR, Singh AK, Khardenavis AA, Purohit HJ (2021) A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. Int J Environ Sci Technol 1–28. https://doi.org/10.1007/s13762-021-03248-8

  44. Duque A, Manzanares P, Ballesteros M (2017) Extrusion as a pretreatment for lignocellulosic biomass: fundamentals and applications. Renew Energy 114:1427–1441. https://doi.org/10.1016/j.renene.2017.06.050

    Article  CAS  Google Scholar 

  45. Nguyen VK, Kumar Chaudhary D, Dahal HR, Hoang TN, Kim J, Chang SW, Hong Y, La Duc D, Nguyen XC, Ngo HH, Chung WJ, Nguyen DD (2021) Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 285:119105. https://doi.org/10.1016/j.fuel.2020.119105

    Article  CAS  Google Scholar 

  46. Aguilar-Reynosa A, Romaní A, Ma. Rodríguez-Jasso R, Aguilar CN, Garrote G, Ruiz HA (2017) Microwave heating processing as alternative of pretreatment in second-generation biorefinery: an overview. Energy Convers Manag 136:50–65. https://doi.org/10.1016/j.enconman.2017.01.004

    Article  CAS  Google Scholar 

  47. Wagner AO, Lackner N, Mutschlechner M, Prem EM, Markt R, Illmer P (2018) Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies (Basel) 11:1797. https://doi.org/10.3390/en11071797.138. Thomsen ST, Londoño JEG, Ambye-Jensen M, Heiske S, Kádár Z, Meyer AS (2016) Combination of ensiling and fungal delignification as effective wheat straw pretreatment. Biotechnol Biofuels 9:1–10. https://doi.org/10.1186/s13068-016-0437-x

  48. Khan MU, Usman M, Ashraf MA, Dutta N, Luo G, Zhang S (2022) A review of recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: opportunities and limitations. Chem Eng J Adv 10:100263. https://doi.org/10.1016/j.ceja.2022.100263

    Article  CAS  Google Scholar 

  49. Sarto S, Hildayati R, Syaichurrozi I (2019) Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics. Renew Energy 132:335–350. https://doi.org/10.1016/j.renene.2018.07.121

    Article  CAS  Google Scholar 

  50. Ahmad S, Pathak VV, Kothari R, Singh RP (2018) Prospects for pretreatment methods of lignocellulosic waste biomass for biogas enhancement: opportunities and challenges. Biofuels 9:575–594. https://doi.org/10.1080/17597269.2017.1378991

    Article  CAS  Google Scholar 

  51. Dechman ICJ, Foody B (2020) US10655149B2 - Pretreatment of lignocellulosic biomass with sulfur dioxide and/or sulfurous acid - patent 10,655,149, issued May 19 (2020). https://patents.google.com/patent/US10655149B2/en.

  52. Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW (2017) Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges. Bioresour Technol 245:1194–1205. https://doi.org/10.1016/j.biortech.2017.08.182

    Article  CAS  PubMed  Google Scholar 

  53. Morone A, Sharma G, Sharma A, Chakrabarti T, Pandey RA (2018) Evaluation, applicability and optimization of advanced oxidation process for pretreatment of rice straw and its effect on cellulose digestibility. Renew Energy 120:88–97. https://doi.org/10.1016/j.renene.2017.12.074

    Article  CAS  Google Scholar 

  54. Mothe S, Polisetty VR (2021) Review on anaerobic digestion of rice straw for biogas production. Environ Sci Pollut Res 28:24455–24469. https://doi.org/10.1007/s11356-020-08762-9

    Article  CAS  Google Scholar 

  55. Alzate ME, Muñoz R, Rogalla F, Fdz-Polanco F, Pérez-Elvira SI (2012) Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour Technol 123:488–494. https://doi.org/10.1016/j.biortech.2012.06.113

    Article  CAS  PubMed  Google Scholar 

  56. Kasinath A, Fudala-Ksiazek S, Szopinska M, Bylinski H, Artichowicz W, Remiszewska-Skwarek A, Luczkiewicz A (2021) Biomass in biogas production: pretreatment and co-digestion. Renew Sustain Energy Rev 150:111509. https://doi.org/10.1016/j.rser.2021.111509

    Article  CAS  Google Scholar 

  57. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9

    Article  PubMed  Google Scholar 

  58. Sanhueza C, Carvajal G, Soto-Aguilar J, Lienqueo ME, Salazar O (2018) The effect of a lytic polysaccharide monooxygenase and a xylanase from Gloeophyllum trabeum on the enzymatic hydrolysis of lignocellulosic residues using a commercial cellulase. Enzyme Microb Technol 113:75–82. https://doi.org/10.1016/j.enzmictec.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  59. Xu W, Fu S, Yang Z, Lu J, Guo R (2018) Improved methane production from corn straw by microaerobic pretreatment with a pure bacteria system. Bioresour Technol 259:18–23. https://doi.org/10.1016/j.biortech.2018.02.046

    Article  CAS  PubMed  Google Scholar 

  60. Sharma HK, Xu C, Qin W (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valorization 10:235–251. https://doi.org/10.1007/s12649-017-0059-y

    Article  CAS  Google Scholar 

  61. Koupaie EH, Dahadha S, Bazyar Lakeh AA, Azizi A, Elbeshbishy E (2019) Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-a review. J Environ Manage 233:774–784. https://doi.org/10.1016/j.jenvman.2018.09.106

    Article  CAS  Google Scholar 

  62. Brémond U, de Buyer R, Steyer JP, Bernet N, Carrere H (2018) Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale. Renew Sustain Energy Rev 90:583–604. https://doi.org/10.1016/j.rser.2018.03.103

    Article  CAS  Google Scholar 

  63. Nagle NJ, Donohoe BS, Wolfrum EJ, Kuhn EM, Haas TJ, Ray AE, Wendt LM, Delwiche ME, Weiss ND, Radtke C (2020) Chemical and structural changes in corn stover after ensiling: influence on bioconversion. Front Bioeng Biotechnol 8:739. https://doi.org/10.3389/fbioe.2020.00739

    Article  PubMed  PubMed Central  Google Scholar 

  64. Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415. https://doi.org/10.1126/science.1196526

    Article  CAS  PubMed  Google Scholar 

  65. Castilho TG, Rodrigues JAD, García J, Subtil EL (2022) Recent advances and perspectives in the use of conductive materials to improve anaerobic wastewater treatment: a systematic review approached. J Water Process Eng 50:103193. https://doi.org/10.1016/j.jwpe.2022.103193

    Article  Google Scholar 

  66. Gahlot P, Ahmed B, Tiwari SB, Aryal N, Khursheed A, Kazmi AA, Tyagi VK (2020) Conductive material engineered direct interspecies electron transfer (DIET) in anaerobic digestion: Mechanism and application. Environ Technol Innov 20:101056. https://doi.org/10.1016/j.eti.2020.101056

    Article  CAS  Google Scholar 

  67. Zhao Z, Li Y, Zhang Y, Lovley DR (2020) Sparking anaerobic digestion: promoting direct interspecies electron transfer to enhance methane production. iScience 23:101794. https://doi.org/10.1016/j.isci.2020.101794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nguyen D, Nitayavardhana S, Sawatdeenarunat C, Surendra KC, Khanal SK (2019) Biogas production by anaerobic digestion: status and perspectives. In: Biomass, Biofuels, Biochem Biofuels Altern Feed Convers Process Prod Liq Gaseous Biofuels. 763–778. https://doi.org/10.1016/B978-0-12-816856-1.00031-2

  69. Liu Y, Li X, Wu S, Tan Z, Yang C (2021) Enhancing anaerobic digestion process with addition of conductive materials. Chemosphere 278:130449. https://doi.org/10.1016/j.chemosphere.2021.130449

    Article  CAS  PubMed  Google Scholar 

  70. Yun S, Xing T, Han F, Shi J, Wang Z, Fan Q, Xu H (2021) Enhanced direct interspecies electron transfer with transition metal oxide accelerants in anaerobic digestion. Bioresour Technol 320:124294. https://doi.org/10.1016/j.biortech.2020.124294

    Article  CAS  PubMed  Google Scholar 

  71. Wang Z, Wang T, Si B, Watson J, Zhang Y (2021) Accelerating anaerobic digestion for methane production: potential role of direct interspecies electron transfer. Renew Sustain Energy Rev 145:111069. https://doi.org/10.1016/j.rser.2021.111069

    Article  CAS  Google Scholar 

  72. Yan W, Shen N, Xiao Y, Chen Y, Sun F, Kumar TV, Zhou Y (2017) The role of conductive materials in the start-up period of thermophilic anaerobic system. Bioresour Technol 239:336–344. https://doi.org/10.1016/j.biortech.2017.05.046

    Article  CAS  PubMed  Google Scholar 

  73. Zhang M, Maneengam A, Sajjad M, Ali A, Allam AA, Ajarem JS, Khim JS (2022) Meta-analysis of bio-based carbon materials for anaerobic digestion with direct interspecies electron transfer mechanism. Mater Lett 310:131485. https://doi.org/10.1016/j.matlet.2021.131485

    Article  CAS  Google Scholar 

  74. Kumar SS, Ghosh P, Kataria N, Kumar D, Thakur S, Pathania D, Kumar V, Nasrullah M, Singh L (2021) The role of conductive nanoparticles in anaerobic digestion: mechanism, current status and future perspectives. Chemosphere 280:130601. https://doi.org/10.1016/j.chemosphere.2021.130601

    Article  CAS  PubMed  Google Scholar 

  75. Jeyakumar RB, Vincent GS (2022) Recent advances and perspectives of nanotechnology in anaerobic digestion: a new paradigm towards sludge biodegradability. Sustain 14(2022):7191. https://doi.org/10.3390/su14127191

    Article  CAS  Google Scholar 

  76. Wang Z, Zhang C, Watson J, Sharma BK, Si B, Zhang Y (2022) Adsorption or direct interspecies electron transfer? A comprehensive investigation of the role of biochar in anaerobic digestion of hydrothermal liquefaction aqueous phase. Chem Eng J 435:135078. https://doi.org/10.1016/j.cej.2022.135078

    Article  CAS  Google Scholar 

  77. Liu H, Wang X, Fang Y, Lai W, Xu S, Lichtfouse E (2022) Enhancing thermophilic anaerobic co-digestion of sewage sludge and food waste with biogas residue biochar. Renew Energy 188:465–475. https://doi.org/10.1016/j.renene.2022.02.044

    Article  CAS  Google Scholar 

  78. Tian T, Qiao S, Li X, Zhang M, Zhou J (2017) Nano-graphene induced positive effects on methanogenesis in anaerobic digestion. Bioresour Technol 224:41–47. https://doi.org/10.1016/j.biortech.2016.10.058

    Article  CAS  PubMed  Google Scholar 

  79. Huang Y, Cai B, Dong H, Li H, Yuan J, Xu H, Wu H, Xu Z, Sun D, Dang Y, Holmes DE (2022) Enhancing anaerobic digestion of food waste with granular activated carbon immobilized with riboflavin. Sci Total Environ 851:158172. https://doi.org/10.1016/j.scitotenv.2022.158172

    Article  CAS  PubMed  Google Scholar 

  80. Cavali M, Libardi Junior N, de Mohedano RA, Filho PB, Costa d RHR, de Junior ABC (2022) Biochar and hydrochar in the context of anaerobic digestion for a circular approach: an overview. Sci Total Environ 822:153614. https://doi.org/10.1016/j.scitotenv.2022.153614

    Article  CAS  PubMed  Google Scholar 

  81. Daniels L, Belay N, Rajagopal BS, Weimer PJ (1987) Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science (1979) 237:509–511. https://doi.org/10.1126/science.237.4814.509

    Article  CAS  Google Scholar 

  82. Ye W, Lu J, Ye J, Zhou Y (2021) The effects and mechanisms of zero-valent iron on anaerobic digestion of solid waste: a mini-review. J Clean Prod 278:123567. https://doi.org/10.1016/j.jclepro.2020.123567

    Article  CAS  Google Scholar 

  83. Ai Z, Zheng S, Liu D, Wang S, Wang H, Huang W, Lei Z, Zhang Z, Yang F, Huang W (2022) Zero-valent iron is not always effective in enhancing anaerobic digestion performance. Chemosphere 306:135544. https://doi.org/10.1016/j.chemosphere.2022.135544

    Article  CAS  PubMed  Google Scholar 

  84. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2017) Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy 120:842–853. https://doi.org/10.1016/j.energy.2016.11.137

    Article  CAS  Google Scholar 

  85. Suanon F, Sun Q, Li M, Cai X, Zhang Y, Yan Y, Yu CP (2017) Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: impact on methane yield and pharmaceutical and personal care products degradation. J Hazard Mater 321:47–53. https://doi.org/10.1016/j.jhazmat.2016.08.076

    Article  CAS  PubMed  Google Scholar 

  86. Farghali M, Andriamanohiarisoamanana FJ, Ahmed MM, Kotb S, Yamashiro T, Iwasaki M, Umetsu K (2019) Impacts of iron oxide and titanium dioxide nanoparticles on biogas production: Hydrogen sulfide mitigation, process stability, and prospective challenges. J Environ Manage 240:160–167. https://doi.org/10.1016/j.jenvman.2019.03.089

    Article  CAS  PubMed  Google Scholar 

  87. Zhong Y, He J, Zhang P, Zou X, Pan X, Zhang J (2022) Effects of different particle size of zero-valent iron (ZVI) during anaerobic digestion: performance and mechanism from genetic level. Chemical Engineering Journal 435:134977. https://doi.org/10.1016/j.cej.2022.134977

    Article  CAS  Google Scholar 

  88. Zheng S, Yang F, Huang W, Lei Z, Zhang Z, Huang W (2022) Combined effect of zero valent iron and magnetite on semi-dry anaerobic digestion of swine manure. Bioresour Technol 346:126438. https://doi.org/10.1016/j.biortech.2021.126438

    Article  CAS  PubMed  Google Scholar 

  89. Fan Y, Yang X, Lei Z, Zhang Z, Kobayashi M, Adachi Y, Shimizu K (2021) Alleviation of ammonia inhibition via nano-bubble water supplementation during anaerobic digestion of ammonia-rich swine manure: buffering capacity promotion and methane production enhancement. Bioresour Technol 333:125131. https://doi.org/10.1016/j.biortech.2021.125131

    Article  CAS  PubMed  Google Scholar 

  90. Liu T, Ou H, Su K, Hu Z, He C, Wang W (2021) Promoting direct interspecies electron transfer and acetoclastic methanogenesis for enhancing anaerobic digestion of butanol octanol wastewater by coupling granular activated carbon and exogenous hydrogen. Bioresour Technol 337:125417. https://doi.org/10.1016/j.biortech.2021.125417

    Article  CAS  PubMed  Google Scholar 

  91. He C, Song H, Liu L, Li P, Kumar AM, Xu G, Zhang Q, Jiao Y, Chang C, Yang Y (2022) Enhancement of methane production by anaerobic digestion of corn straw with hydrogen-nanobubble water. Bioresour Technol 344:126220. https://doi.org/10.1016/j.biortech.2021.126220

    Article  CAS  PubMed  Google Scholar 

  92. Kunatsa T, Xia X (2022) A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimization on biogas production and enhancement. Bioresour Technol 344:126311. https://doi.org/10.1016/j.biortech.2021.126311

    Article  CAS  PubMed  Google Scholar 

  93. Palma-Heredia D, Verdaguer M, Molinos-Senante M, Poch M, Cugueró-Escofet M (2021) Optimized blending for anaerobic co-digestion using ant colony approach: Besòs river basin case study. Renew Energy 168:141–150. https://doi.org/10.1016/j.renene.2020.12.064

    Article  Google Scholar 

  94. Wang W, Lee DJ, Lei Z (2022) Integrating anaerobic digestion with microbial electrolysis cell for performance enhancement: a review. Bioresour Technol 344:126321. https://doi.org/10.1016/j.biortech.2021.126321

    Article  CAS  PubMed  Google Scholar 

  95. Guo H, Hua J, Cheng J, Yue L, Zhou J (2022) Microbial electrochemistry enhanced electron transfer in lactic acid anaerobic digestion for methane production. J Clean Prod 358:131983. https://doi.org/10.1016/j.jclepro.2022.131983

    Article  CAS  Google Scholar 

  96. Vasco-Correa J, Khanal S, Manandhar A, Shah A (2018) Anaerobic digestion for bioenergy production: global status, environmental and techno-economic implications, and government policies. Bioresour Technol 247:1015–1026. https://doi.org/10.1016/j.biortech.2017.09.004

    Article  CAS  PubMed  Google Scholar 

  97. Mishra A, Kumar M, Bolan NS, Kapley A, Kumar R, Singh L (2021) Multidimensional approaches of biogas production and up-gradation: opportunities and challenges. Bioresour Technol 338:125514. https://doi.org/10.1016/j.biortech.2021.125514

    Article  CAS  PubMed  Google Scholar 

  98. Pasciucco F, Francini G, Pecorini I, Baccioli A, Lombardi L, Ferrari L (2023) Valorization of biogas from the anaerobic co-treatment of sewage sludge and organic waste: life cycle assessment and life cycle costing of different recovery strategies. J Clean Prod 401:136762. https://doi.org/10.1016/j.jclepro.2023.136762

    Article  CAS  Google Scholar 

  99. Dastjerdi B, Strezov V, Rajaeifar MA, Kumar R, Behnia M (2021) A systematic review on life cycle assessment of different waste to energy valorization technologies. J Clean Prod 290:125747. https://doi.org/10.1016/j.jclepro.2020.125747

    Article  CAS  Google Scholar 

  100. Rajendran K, Murthy GS (2019) Techno-economic and life cycle assessments of anaerobic digestion – a review. Biocatal Agric Biotechnol 20:101207. https://doi.org/10.1016/j.bcab.2019.101207

    Article  Google Scholar 

  101. Al-Wahaibi A, Osman AI, Al-Muhtaseb AH, Alqaisi O, Baawain M, Fawzy S, Rooney DW (2020) Techno-economic evaluation of biogas production from food waste via anaerobic digestion. Sci Rep 10:1–16. https://doi.org/10.1038/s41598-020-72897-5

    Article  CAS  Google Scholar 

  102. Zhao S, Yan K, Wang Z, Gao Y, Li K, Peng J (2023) Does anaerobic digestion improve environmental and economic benefits of sludge incineration in China? Insight from life-cycle perspective. Resour Conserv Recycl 188:106688. https://doi.org/10.1016/j.resconrec.2022.106688

    Article  Google Scholar 

  103. Hijazi O, Abdelsalam E, Samer M, Attia YA, Amer BMA, Amer MA, Badr M, Bernhardt H (2020) Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure. Renew Energy 148:417–424. https://doi.org/10.1016/j.renene.2019.10.048

    Article  CAS  Google Scholar 

  104. Chen L, Fang W, Liang J, Nabi M, Cai Y, Wang Q, Zhang P, Zhang G (2023) Biochar application in anaerobic digestion: performances, mechanisms, environmental assessment and circular economy. Resour Conserv Recycl 188:106720. https://doi.org/10.1016/j.resconrec.2022.106720

    Article  CAS  Google Scholar 

  105. Wang Y, Wu X, Tong X, Li T, Wu F (2018) Life cycle assessment of large-scale and household biogas plants in northwest China. J Clean Prod 192:221–235. https://doi.org/10.1016/j.jclepro.2018.04.264

    Article  CAS  Google Scholar 

  106. Tong H, Shen Y, Zhang J, Wang CH, Ge TS, Tong YW (2018) A comparative life cycle assessment on four waste-to-energy scenarios for food waste generated in eateries. Appl Energy 225:1143–1157. https://doi.org/10.1016/j.apenergy.2018.05.062

    Article  CAS  Google Scholar 

  107. Glivin G, Kalaiselvan N, Mariappan V, Premalatha M, Murugan PC, Sekhar J (2021) Conversion of biowaste to biogas: a review of current status on techno-economic challenges, policies, technologies and mitigation to environmental impacts. Fuel 302:121153. https://doi.org/10.1016/j.fuel.2021.121153

    Article  CAS  Google Scholar 

  108. Mahmod SS, Jahim JM, Abdul PM, Luthfi AAI, Takriff MS (2021) Techno-economic analysis of two-stage anaerobic system for biohydrogen and biomethane production from palm oil mill effluent. J Environ Chem Eng 9:105679. https://doi.org/10.1016/j.jece.2021.105679

    Article  CAS  Google Scholar 

  109. Cabello A, Mendiara T, Abad A, Adánez J (2022) Techno-economic analysis of a chemical looping combustion process for biogas generated from livestock farming and agro-industrial waste. Energy Convers Manag 267:115865. https://doi.org/10.1016/j.enconman.2022.115865

    Article  CAS  Google Scholar 

  110. Mabalane PN, Oboirien BO, Sadiku ER, Masukume M (2021) A techno-economic analysis of anaerobic digestion and gasification hybrid system: energy recovery from municipal solid waste in South Africa. Waste Biomass Valorization 12:1167–1184. https://doi.org/10.1007/s12649-020-01043-z

    Article  CAS  Google Scholar 

  111. Tolessa A, Louw TM, Goosen NJ (2022) Probabilistic techno-economic assessment of anaerobic digestion predicts economic benefits to smallholder farmers with quantifiable certainty. Waste Manage 138:8–18. https://doi.org/10.1016/j.wasman.2021.11.004

    Article  Google Scholar 

  112. Bharathiraja B, Sudharsana T, Jayamuthunagai J, Praveenkumar R, Chozhavendhan S, Iyyappan J (2018) Biogas production – a review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew Sustain Energy Rev 90:570–582. https://doi.org/10.1016/j.rser.2018.03.093

    Article  CAS  Google Scholar 

  113. Zieliński M, Kisielewska M, Dębowski M, Elbruda K (2019) Effects of nutrients supplementation on enhanced biogas production from maize silage and cattle slurry mixture. Water Air Soil Pollut 230. 230 (2019). https://doi.org/10.1007/s11270-019-4162-5

  114. Wilkins D, Lu XY, Shen Z, Chen J, Lee PKH (2015) Pyrosequencing of mcrA and archaeal 16s rRNA genes reveals diversity and substrate preferences of methanogen communities in anaerobic digesters. Appl Environ Microbiol 81:604–613. https://doi.org/10.1128/AEM.02566-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ivan MS, Vítězová KM, Struk M, Kushkevych I, Vítězová ÁM (2020) Biogas upgrading methods: recent advancements and emerging technologies pressure swing adsorption PSB Purple sulphur bacteria VSA Vacuum swing adsorption. Rev Environ Sci Biotechnol 19:651–671. https://doi.org/10.1007/s11157-020-09539-9

    Article  CAS  Google Scholar 

  116. Kapoor R, Ghosh P, Kumar M, Sengupta S, Gupta A, Kumar SS, Vijay V, Kumar V, Vijay VK, Pant D (2020) Valorization of agricultural waste for biogas based circular economy in India: a research outlook. Bioresour Technol 304. https://doi.org/10.1016/j.biortech.2020.123036

  117. Harirchi S, Wainaina S, Sar T, Nojoumi SA, Parchami M, Parchami M, Varjani S, Khanal SK, Wong J, Awasthi MK, Taherzadeh MJ (2022) Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. Bioengineered 13:6521–6557. https://doi.org/10.1080/21655979.2022.2035986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Keerthana Devi M, Manikandan S, Oviyapriya M, Selvaraj M, Assiri MA, Vickram S, Subbaiya R, Karmegam N, Ravindran B, Chang SW, Awasthi MK (2022) Recent advances in biogas production using agro-industrial waste: a comprehensive review outlook of Techno-Economic analysis. Bioresour Technol 363:127871. https://doi.org/10.1016/j.biortech.2022.127871

    Article  CAS  PubMed  Google Scholar 

  119. Hu L, Peng H, Xia Q, Zhang Y, Ruan R, Zhou W (2020) Effect of ionic liquid pretreatment on the physicochemical properties of hemicellulose from bamboo. J Mol Struct 1210:128067. https://doi.org/10.1016/j.molstruc.2020.128067

    Article  CAS  Google Scholar 

  120. Hernández-Beltrán JU, Hernández-De Lira IO, Cruz-Santos MM, Saucedo-Luevanos A, Hernández-Terán F, Balagurusamy N (2019) Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: current state, challenges, and opportunities. Appl Sci 9:3721. https://doi.org/10.3390/app9183721

    Article  CAS  Google Scholar 

  121. Majeke BM, Collard FX, Tyhoda L, Görgens JF (2022) The application of enzymatic pretreatment with subsequent pyrolysis to improve the production of phenols from selected industrial (technical) lignins. Waste Biomass Valorization 13:2009–2015. https://doi.org/10.1007/s12649-021-01656-y

    Article  CAS  Google Scholar 

  122. Nguyen LN, Vu MT, Abu Hasan Johir M, Pernice M, Ngo HH, Zdarta J, Jesionowski T, Nghiem LD (2021) Promotion of direct interspecies electron transfer and potential impact of conductive materials in anaerobic digestion and its downstream processing - a critical review. Bioresour Technol 341:125847. https://doi.org/10.1016/j.biortech.2021.125847

    Article  CAS  PubMed  Google Scholar 

  123. Qadoos K, Nawaz A, Mukhtar H (2022) Advances in lignocellulosic biomass pretreatment strategies. Adv Energy Technol Syst I:71–89. https://doi.org/10.1007/978-3-030-85746-2_4

    Article  Google Scholar 

  124. Agarwal NK, Kumar M, Ghosh P, Kumar SS, Singh L, Vijay VK, Kumar V (2022) Anaerobic digestion of sugarcane bagasse for biogas production and digestate valorization. Chemosphere 295:133893. https://doi.org/10.1016/j.chemosphere.2022.133893

    Article  CAS  PubMed  Google Scholar 

  125. Zhang S, Wang Y, Song H, Lu J, Yuan Z, Guo J (2019) Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. Environ Int 129:478–487. https://doi.org/10.1016/j.envint.2019.05.054

    Article  CAS  PubMed  Google Scholar 

  126. Gonzalez-Estrella J, Sierra-Alvarez R, Field JA (2013) Toxicity assessment of inorganic nanoparticles to acetoclastic and hydrogenotrophic methanogenic activity in anaerobic granular sludge. J Hazard Mater 260:278–285. https://doi.org/10.1016/j.jhazmat.2013.05.029

    Article  CAS  PubMed  Google Scholar 

  127. Lee YJ, Lee DJ (2019) Impact of adding metal nanoparticles on anaerobic digestion performance – a review. Bioresour Technol 292. https://doi.org/10.1016/j.biortech.2019.121926.

  128. Wang T, Zhang D, Dai L, Chen Y, Dai X (2016) Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge. Scientific Reports 2016 6:1 6:1–10. https://doi.org/10.1038/srep25857

  129. Hassanein A, Lansing S, Tikekar R (2019) Impact of metal nanoparticles on biogas production from poultry litter. Bioresour Technol 275:200–206. https://doi.org/10.1016/j.biortech.2018.12.048

    Article  CAS  PubMed  Google Scholar 

  130. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2017) Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energy Convers Manag 141:108–119. https://doi.org/10.1016/j.enconman.2016.05.051

    Article  CAS  Google Scholar 

  131. Amen TWM, Eljamal O, Khalil AME, Matsunaga N (2017) Biochemical methane potential enhancement of domestic sludge digestion by adding pristine iron nanoparticles and iron nanoparticles coated zeolite compositions. J Environ Chem Eng 5:5002–5013. https://doi.org/10.1016/j.jece.2017.09.030

    Article  CAS  Google Scholar 

  132. Yan W, Lu D, Liu J, Zhou Y (2019) The interactive effects of ammonia and carbon nanotube on anaerobic digestion. Chem Eng J 372:332–340. https://doi.org/10.1016/j.cej.2019.04.163

    Article  CAS  Google Scholar 

  133. Zhang L, Zhang J, Loh KC (2018) Activated carbon enhanced anaerobic digestion of food waste – laboratory-scale and pilot-scale operation. Waste Manage 75:270–279. https://doi.org/10.1016/j.wasman.2018.02.020

    Article  CAS  Google Scholar 

  134. Hao Y, Wang Y, Ma C, White JC, Zhao Z, Duan C, Zhang Y, Adeel M, Rui Y, Li G, Xing B (2019) Carbon nanomaterials induce residue degradation and increase methane production from livestock manure in an anaerobic digestion system. J Clean Prod 240:0–31. https://doi.org/10.1016/j.jclepro.2019.118257

    Article  CAS  Google Scholar 

  135. Kaushal R, Baitha R (2021) Biogas and methane yield enhancement using graphene oxide nanoparticles and Ca(OH)2 pre-treatment in anaerobic digestion. Int J Ambient Energy 42:618–625. https://doi.org/10.1080/01430750.2018.1562975

    Article  CAS  Google Scholar 

  136. Zhao W, Yang H, He S, Zhao Q, Wei L (2021) A review of biochar in anaerobic digestion to improve biogas production: performances, mechanisms and economic assessments. Bioresour Technol 341:125797. https://doi.org/10.1016/j.biortech.2021.125797

    Article  CAS  PubMed  Google Scholar 

  137. Mahmud R, Moni SM, High K, Carbajales-Dale M (2021) Integration of techno-economic analysis and life cycle assessment for sustainable process design – a review. J Clean Prod 317:128247. https://doi.org/10.1016/j.jclepro.2021.128247

    Article  Google Scholar 

  138. Alengebawy A, Mohamed BA, Ghimire N, Jin K, Liu T, Samer M, Ai P (2022) Understanding the environmental impacts of biogas utilization for energy production through life cycle assessment: an action towards reducing emissions. Environ Res 213:113632. https://doi.org/10.1016/j.envres.2022.113632

    Article  CAS  PubMed  Google Scholar 

  139. Varling AS, Christensen TH, Bisinella V (2023) Life cycle assessment of alternative biogas utilisations, including carbon capture and storage or utilisation. Waste Manage 157:168–179. https://doi.org/10.1016/j.wasman.2022.12.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are greatly thankful to Ms. Neha Saini, Research Scholar in the Department of Environmental Science and Engineering, GJUS&T, Hisar, Haryana, India, for her support to improve the manuscript. The authors are grateful to the Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India, for the resources provided to complete the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Paramjeet Dhull—conceptualization, data collection, writing- original draft preparation, reviewing and editing; Rajesh Kumar Lohchab—supervision, reviewing and editing; Sachin Kumar—reviewing and editing; Mikhlesh Kumari—data collection, reviewing, and editing; Shaloo—reviewing and editing; Anil Kumar—supervision, reviewing, and editing.

Corresponding author

Correspondence to Rajesh Kumar Lohchab.

Ethics declarations

Ethical Approval

This declaration is not applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The efficiency of the AD process for biogas production has been focused.

• The operating parameters, reactor types are very influential for biogas enhancement.

• Pre-treatment methods for the enhancement of AD are highlighted.

• DIET plays an important role to enhance biogas yield.

• LCA and TEA are critical tools for industrial scale set-up.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhull, P., Lohchab, R.K., Kumar, S. et al. Anaerobic Digestion: Advance Techniques for Enhanced Biomethane/Biogas Production as a Source of Renewable Energy. Bioenerg. Res. 17, 1228–1249 (2024). https://doi.org/10.1007/s12155-023-10621-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10621-7

Keywords

Navigation