Skip to main content
Log in

Recent Trends, Potentials, and Challenges of Biodiesel Production from Discarded Animal Fats: a Comprehensive Review

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Biodiesel is drawing interest as an alternative and eco-friendly substitute energy resource synthesized from vegetative and animals’ origin lipids. However, the costs of biodiesel feedstock still concern the researchers. Besides, the dependence on edible oils of first generation as a feedstock made the total footprint of biodiesel unsustainable since it threatens the sources of human food and consumes many resources during cultivation. For this regard, the current study was scoped to offer a reliable and affordable feedstock utilized from slaughterhouses’ wastes for biodiesel industry. Utilizing the tremendous amounts of discarded animal fats (DAFs) as a feedstock for biodiesel production minimizes slaughterhouses’ wastes and promotes sustainable energy resources. Technologies of DAFs disposal, lipids extraction, treatment, and conversion into biodiesel were critically discussed and compared based on advantages and disadvantages. Discussion was expanded to include the characteristics of animal-based biodiesel distinguished by higher heating value, cetane number, oxidation stability, and lower NOx emissions. Argument was evolved regarding the ethical, production, performance, and economic challenges. The results of this comprehensive review affirm the possibility of DAFs feedstock to offer affordable and sustainable biodiesel fuel.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shirzad M, Panahi HKS, Dashti BB, Rajaeifar MA, Aghbashlo M, Tabatabaei M (2019) A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran. Renew Sustain Energy Rev 111:571–594. https://doi.org/10.1016/j.rser.2019.05.011

    Article  CAS  Google Scholar 

  2. Toldrá-Reig F, Mora L, Toldrá F (2020) Developments in the use of lipase transesterification for biodiesel production from animal fat waste. Appl Sci 10:5085. https://doi.org/10.3390/app10155085

    Article  CAS  Google Scholar 

  3. Bušić A, Kundas S, Morzak G, Belskaya H, Marđetko N, Ivančić ŠM, Komes D, Novak S, Šantek B (2018) Recent trends in biodiesel and biogas production. Food Technol Biotechnol 56:152–173. https://doi.org/10.17113/ftb.56.02.18.5547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yusoff MNMA, Zulkifli NMW, Sukiman NL, Chyuan OH, Hassan MH, Hasnul MH, Zulkifli MSA, Abbas MM (2021) Sustainability of palm biodiesel in transportation: a review on biofuel standard, policy and international collaboration between Malaysia and Colombia. Bioenergy Res 14:43–60. https://doi.org/10.1007/s12155-020-10165-0

    Article  PubMed  Google Scholar 

  5. Bhuiya MMK, Rasul MG, Khan MMK, Ashwath N (2020) Biodiesel production and characterisation of poppy (Papaver somniferum L) seed oil methyl ester as a source of 2nd generation biodiesel feedstock. Ind Crops Prod 152:112493. https://doi.org/10.1016/j.indcrop.2020.112493

    Article  CAS  Google Scholar 

  6. Ranjitha J, Raghavendra SG, Vijayalakshmi S, Deepanraj B (2020) Production, optimisation and engine characteristics of beef tallow biodiesel rendered from leather fleshing and slaughterhouse wastes. Biomass Convers Biorefinery 10:675–688. https://doi.org/10.1007/s13399-019-00501-6

    Article  CAS  Google Scholar 

  7. Nagappan B, Devarajan Y, Kariappan E, Philip SB, Gautam S (2021) Influence of antioxidant additives on performance and emission characteristics of beef tallow biodiesel-fuelled CI engine. Environ Sci Pollut Res 28:12041–12055. https://doi.org/10.1007/s11356-020-09065-9

    Article  CAS  Google Scholar 

  8. Binhweel F, Ahmad MI, Zaki SA (2022) Utilization of polymeric materials toward sustainable biodiesel industry: a recent review. Polymers 14:19. https://doi.org/10.3390/polym14193950

    Article  CAS  Google Scholar 

  9. Chizoo C, Ume CS, Esonye MC, Okafor VN, Ofoefule AU (2017) Extraction of Nigerian beef tallow by wet rendering process and its characterization. World News Nat Sci 15:129–138

    CAS  Google Scholar 

  10. Vaverková MD (2019) Landfill impacts on the environment. Geosciences 9:431. https://doi.org/10.3390/geosciences9100431

    Article  CAS  Google Scholar 

  11. Ndiaye M, Arhaliass A, Legrand J, Roelens G, Kerihuel A (2020) Reuse of waste animal fat in biodiesel: biorefining heavily-degraded contaminant-rich waste animal fat and formulation as diesel fuel additive. Renew Energy 145:1073–1079. https://doi.org/10.1016/j.renene.2019.06.030

    Article  CAS  Google Scholar 

  12. Hewavitharana GG, Perera DN, Navaratne SB, Wickramasinghe I (2020) Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: a review. Arab J Chem 13:6865–6875. https://doi.org/10.1016/j.arabjc.2020.06.039

    Article  CAS  Google Scholar 

  13. Srinivasan G R, Shankar V, Sekharan CS, Munir M, Balakrishnan D, Mohanam A, Jambulingam R (2020) Influence of fatty acid composition on process optimization and characteristics assessment of biodiesel produced from waste animal fat. Energy Sources, Part A Recover. Util. Environ. Eff 1–19, https://doi.org/10.1080/15567036.2020.1771477

  14. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  CAS  PubMed  Google Scholar 

  15. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  16. Ramalhosa MJ, Paíga P, Morais S, Alves MR, Delerue-Matos C, Oliveira MBPP (2012) Lipid content of frozen fish: comparison of different extraction methods and variability during freezing storage. Food Chem 131:328–336. https://doi.org/10.1016/j.foodchem.2011.07.123

    Article  CAS  Google Scholar 

  17. Costa DSV, Bragagnolo N (2017) Development and validation of a novel microwave assisted extraction method for fish lipids. Eur J Lipid Sci Technol 119:1600108. https://doi.org/10.1002/ejlt.201600108

    Article  CAS  Google Scholar 

  18. Chemat F, Rombaut N, Sicaire A-G, Meullemiestre A, Fabiano-Tixier A-S, Abert-Vian M (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review Ultrason Sonochem 34:540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035

    Article  CAS  PubMed  Google Scholar 

  19. Srinivasan GR, Palani S, Munir M, Saeed M, Thangavelu L, Mohanam A, Jambulingam R (2020) Engine characteristics study on beef tallow biodiesel produced by ethanol based co-solvent transesterification. Energy Sources, Part A Recover. Util. Environ. Eff 1–21. https://doi.org/10.1080/15567036.2020.1826014

  20. Srinivasan GR, Shankar V, Jambulingam R (2019) Experimental study on influence of dominant fatty acid esters in engine characteristics of waste beef tallow biodiesel. Energy Explor Exploit 37:1098–1124. https://doi.org/10.1177/0144598718821791

    Article  CAS  Google Scholar 

  21. Sander A, Košćak MA, Kosir D, Milosavljević N, Vuković JP, Magić L (2018) The influence of animal fat type and purification conditions on biodiesel quality. Renew energy 118:752–760. https://doi.org/10.1016/j.renene.2017.11.068

    Article  CAS  Google Scholar 

  22. Srinivasan GR, Palani S, Jambulingam R (2018) Biodiesel production from waste animal fat using a novel catalyst HCA immobilized AuNPS amine grafted SBA-15. J Eng Sci Technol 13:2632–2643

    Google Scholar 

  23. Kumbhar V, Pandey A, Sonawane CR, El-Shafay AS, Panchal H, Chamkha AJ (2022) Statistical analysis on prediction of biodiesel properties from its fatty acid composition. Case Stud Therm Eng 30:101775. https://doi.org/10.1016/j.csite.2022.101775

    Article  Google Scholar 

  24. Mata TM, Cardoso N, Ornelas M, Neves S, Caetano NS (2010) Sustainable production of biodiesel from tallow, lard and poultry fat and its quality evaluation. Chem Eng Trans 19:13–18. https://doi.org/10.3303/CET1019003

    Article  Google Scholar 

  25. Booramurthy VK, Kasimani R, Pandian S, Ragunathan B, (2020) Nano-sulfated zirconia catalyzed biodiesel production from tannery waste sheep fat. Environ. Sci. Pollut. Res 1–8. https://doi.org/10.1007/s11356-020-07984-1

  26. Tabatabaei M, Aghbashlo M, Dehhaghi M, Panahi HKS, Mollahosseini A, Hosseini M, Soufiyan MM (2019) Reactor technologies for biodiesel production and processing: a review. Prog Energy Combust Sci 74:239–303. https://doi.org/10.1016/j.pecs.2019.06.001

    Article  Google Scholar 

  27. Karmakar B, Halder G (2019) Progress and future of biodiesel synthesis: advancements in oil extraction and conversion technologies. Energy Convers Manag 182:307–339. https://doi.org/10.1016/j.enconman.2018.12.066

    Article  CAS  Google Scholar 

  28. Attaphong C, Charoensaeng A, Sorrasuchart N, Khaodhiar S, Arpornpong N, Sabatini DA (2017) Phase behaviors and fuel properties of palm oil-based microemulsion biofuels using sugar-based surfactants. In 2017 IEEE international conference on environment and electrical engineering and 2017 IEEE industrial and commercial power systems Europe (EEEIC/I&CPS Europe) 1–5. https://doi.org/10.1109/EEEIC.2017.7977437

  29. Arpornpong N, Sabatini DA, Khaodhiar S, Charoensaeng A (2015) Life cycle assessment of palm oil microemulsion-based biofuel. Int J Life Cycle Assess 20:913–926. https://doi.org/10.1007/s11367-015-0888-5

    Article  CAS  Google Scholar 

  30. Leng L, Han P, Yuan X, Li J, Zhou W (2018) Biodiesel microemulsion upgrading and thermogravimetric study of bio-oil produced by liquefaction of different sludges. Energy 153:1061–1072. https://doi.org/10.1016/j.energy.2018.04.087

    Article  CAS  Google Scholar 

  31. Sharma Y, Singh B, Upadhyay SN (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87:2355–2373. https://doi.org/10.1016/j.fuel.2008.01.014

    Article  CAS  Google Scholar 

  32. Trabelsi ABH, Zaafouri K, Baghdadi W, Naoui S, Ouerghi A (2018) Second generation biofuels production from waste cooking oil via pyrolysis process. Renew Energy 126:888–896. https://doi.org/10.1016/j.renene.2018.04.002

    Article  CAS  Google Scholar 

  33. Mahari WAW, Chong CT, Lam WH, Anuar TNST, Ma NL, Ibrahim MD, Lam SS (2018) Microwave co-pyrolysis of waste polyolefins and waste cooking oil: influence of N2 atmosphere versus vacuum environment. Energy Convers Manag 171:1292–1301. https://doi.org/10.1016/j.enconman.2018.06.073

    Article  CAS  Google Scholar 

  34. Abdelfattah MSH, Abu-Elyazeed OSM, Abdelazeem MA (2018) On biodiesels from castor raw oil using catalytic pyrolysis. Energy 143:950–960. https://doi.org/10.1016/j.energy.2017.09.095

    Article  CAS  Google Scholar 

  35. Bartocci P, D’amico M, Moriconi N, Bidini G, Fantozzi F (2015) Pyrolysis of olive stone for energy purposes. Energy Procedia 82:374–380. https://doi.org/10.1016/j.egypro.2015.11.808

    Article  CAS  Google Scholar 

  36. Kumar RV, Nachiyar VC, Farizah AB, Nityasree J (2019) Production and characterization of biodiesel obtained from transesterification of lipid from goat tallow. J Environ Biol 40:601–606. https://doi.org/10.22438/jeb/40/4/MRN-731

    Article  CAS  Google Scholar 

  37. Esmaeili H, Foroutan R (2018) Optimization of biodiesel production from goat tallow using alkaline catalysts and combining them with diesel. Chem Chem Technol 12:120–126. https://doi.org/10.23939/chcht12.01.120

    Article  CAS  Google Scholar 

  38. Rasouli H, Esmaeili H (2019) Characterization of MgO nanocatalyst to produce biodiesel from goat fat using transesterification process. 3 Biotech 9:1–11. https://doi.org/10.1007/s13205-019-1963-6

    Article  CAS  Google Scholar 

  39. Khalifeh R, Esmaeili H (2021) Biodiesel production from goat fat using calcium oxide nanocatalyst and its combination with diesel fuel to improve fuel properties. Int J Sustain Eng 14:1122–1131. https://doi.org/10.1080/19397038.2020.1780336

    Article  Google Scholar 

  40. Adepoju TF (2020) Optimization processes of biodiesel production from pig and neem (Azadirachta indica a. Juss) seeds blend oil using alternative catalysts from waste biomass. Ind Crops Prod 149:112334. https://doi.org/10.1016/j.indcrop.2020.112334

    Article  CAS  Google Scholar 

  41. Lawan I, Garba ZN, Zhou W, Zhang M, Yuan Z (2020) Synergies between the microwave reactor and CaO/zeolite catalyst in waste lard biodiesel production. Renew Energy 145:2550–2560. https://doi.org/10.1016/j.renene.2019.08.008

    Article  CAS  Google Scholar 

  42. Robert RJ, Girish CR (2020) Production of biodiesel from pork lard waste and characterization of its properties. J Eng Sci Technol 15:3876–3890

    Google Scholar 

  43. Seffati K, Esmaeili H, Honarvar B, Esfandiari N (2020) AC/CuFe2O4@ CaO as a novel nanocatalyst to produce biodiesel from chicken fat. Renew Energy 147:25–34. https://doi.org/10.1016/j.renene.2019.08.105

    Article  CAS  Google Scholar 

  44. Kirubakaran M, Selvan VAM (2021) Experimental investigation on the effects of micro eggshell and nano-eggshell catalysts on biodiesel optimization from waste chicken fat. Bioresour Technol Reports 14:100658. https://doi.org/10.1016/j.biteb.2021.100658

    Article  CAS  Google Scholar 

  45. Barua P, Hossain N, Chowdhury T, Chowdhury H (2020) Commercial diesel application scenario and potential of alternative biodiesel from waste chicken skin in Bangladesh. Environ Technol Innov 20:101139. https://doi.org/10.1016/j.eti.2020.101139

    Article  CAS  Google Scholar 

  46. Ching-Velasquez J, Fernández-Lafuente R, Rodrigues RC, Plata V, Rosales-Quintero A, Torrestiana-Sánchez B, Tacias-Pascacio VG (2020) Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis. Renew Energy 153:1346–1354. https://doi.org/10.1016/j.renene.2020.02.100

    Article  CAS  Google Scholar 

  47. Marín-Suárez M, Méndez-Mateos D, Guadix A, Guadix EM (2019) Reuse of immobilized lipases in the transesterification of waste fish oil for the production of biodiesel. Renew Energy 140:1–8. https://doi.org/10.1016/j.renene.2019.03.035

    Article  CAS  Google Scholar 

  48. Kara K, Ouanji F, Lotfi EM, El Mahi M, Kacimi M, Ziyad M (2018) Biodiesel production from waste fish oil with high free fatty acid content from Moroccan fish-processing industries. Egypt J Pet 27:249–255. https://doi.org/10.1016/j.ejpe.2017.07.010

    Article  Google Scholar 

  49. UlHaq I, Akram A, Nawaz A, Abbas SZ, Xu Y, Rafatullah M (2021) Comparative analysis of various waste cooking oils for esterification and transesterification processes to produce biodiesel. Green Chem Lett Rev 14:462–473. https://doi.org/10.1080/17518253.2021.1941305

    Article  CAS  Google Scholar 

  50. Mandari V, Devarai SK (2022) Biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: a critical review. BioEnergy Res 15:935–961. https://doi.org/10.1007/s12155-021-10333-w

    Article  CAS  PubMed  Google Scholar 

  51. Jambulingam R, Srinivasan GR, Palani S, Munir M, Saeed M, Mohanam A (2020) Process optimization of biodiesel production from waste beef tallow using ethanol as co-solvent. SN Appl Sci 2:1454. https://doi.org/10.1007/s42452-020-03243-7

    Article  CAS  Google Scholar 

  52. Ezekannagha CB, Ude CN, Onukwuli OD (2017) Optimization of the methanolysis of lard oil in the production of biodiesel with response surface methodology. Egypt J Pet 26:1001–1011. https://doi.org/10.1016/j.ejpe.2016.12.004

    Article  Google Scholar 

  53. Jayaprabakar J, Dawn SS, Ranjan A, Priyadharsini P, George RJ, Sadaf S, Rajha CR (2019) Process optimization for biodiesel production from sheep skin and its performance, emission and combustion characterization in CI engine. Energy 174:54–68. https://doi.org/10.1016/j.energy.2019.02.140

    Article  CAS  Google Scholar 

  54. Tavares DC, Júnior HFM, Santos LO, Mendes MF (2017) Optimization of biodiesel production from frying oil and bovine tallow. Brazilian J Pet Gas 11:063–078. https://doi.org/10.5419/bjpg2017-0006

    Article  Google Scholar 

  55. Rocha TG, Gomes PH, de Souza MCM, dos Monteiro RRC, Santos JCS (2021) Lipase cocktail for optimized biodiesel production of free fatty acids from residual chicken oil. Catal. Letters 151:1155–1166. https://doi.org/10.1007/s10562-020-03367-w

    Article  CAS  Google Scholar 

  56. Mohiddin MN, Saleh AA, Reddy ANR, Hamdan S (2018) A study on chicken fat as an alternative feedstock: biodiesel production, fuel characterisation, and diesel engine performance analysis. Int J Automot Mech Eng 15:5535–5546. https://doi.org/10.15282/ijame.15.3.2018.10.0425

    Article  CAS  Google Scholar 

  57. Ilias MKM, Balakrishnan V, Zuknik MH, Al-Gheethi A, Ghfar AA, Hossain MS (2021) Supercritical CO2 separation of lipids from chicken by-product waste for biodiesel production: optimization, kinetics, and thermodynamics modeling. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-02092-7

    Article  Google Scholar 

  58. Hamdan SH, Chong WWF, Ng J-H, Ghazali MJ, Wood RJK (2017) Influence of fatty acid methyl ester composition on tribological properties of vegetable oils and duck fat derived biodiesel. Tribol Int 113:76–82. https://doi.org/10.1016/j.triboint.2016.12.008

    Article  Google Scholar 

  59. Saka S, Kusdiana D (2001) Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80:225–231. https://doi.org/10.1016/S0016-2361(00)00083-1

    Article  CAS  Google Scholar 

  60. Torrentes-Espinoza G, Miranda BC, Vega-Baudrit J, Mata-Segreda JF (2017) Castor oil (Ricinus communis) supercritical methanolysis. Energy 140:426–435. https://doi.org/10.1016/j.energy.2017.08.122

    Article  CAS  Google Scholar 

  61. Farobie O, Sasanami K, Matsumura Y (2015) A novel spiral reactor for biodiesel production in supercritical ethanol. Appl Energy 147:20–29. https://doi.org/10.1016/j.apenergy.2015.02.033

    Article  CAS  Google Scholar 

  62. Yamazaki R, Iwamoto S, Nabetani H, Osakada K, Miyawaki O, Sagara Y (2007) Noncatalytic alcoholysis of oils for biodiesel fuel production by a semi-batch process. Japan J Food Eng 8:11–18

    Article  Google Scholar 

  63. Joelianingsih MH, Hagiwara S, Nabetani H, Sagara Y, Soerawidjaya TH, Tambunan AH, Abdullah K (2008) Biodiesel fuels from palm oil via the non-catalytic transesterification in a bubble column reactor at atmospheric pressure: a kinetic study. Renew Energy 33:1629–1636. https://doi.org/10.1016/j.renene.2007.08.011

    Article  CAS  Google Scholar 

  64. Cho HJ, Kim SH, Hong SW, Yeo Y-K (2012) A single step non-catalytic esterification of palm fatty acid distillate (PFAD) for biodiesel production. Fuel 93:373–380. https://doi.org/10.1016/j.fuel.2011.08.063

    Article  CAS  Google Scholar 

  65. García-Morales R, Zúñiga-Moreno A, Verónico-Sánchez FJ, Domenzain-González J, Pérez-López HI, Bouchot C, Elizalde-Solis O (2022) Fatty acid methyl esters from waste beef tallow using supercritical methanol transesterification. Fuel 313:122706. https://doi.org/10.1016/j.fuel.2021.122706

    Article  CAS  Google Scholar 

  66. Bolonio D, Marco Neu P, Schober S, García-Martínez M-J, Mittelbach M, Canoira L (2018) Fatty acid ethyl esters from animal fat using supercritical ethanol process. Energy Fuels 32:490–496. https://doi.org/10.1021/acs.energyfuels.7b02991

    Article  CAS  Google Scholar 

  67. Poudel J, Shah M, Karki S, Oh SC (2017) Qualitative analysis of transesterification of waste pig fat in supercritical alcohols. Energies 10https://doi.org/10.3390/en10030265

  68. Yuliana M, Santoso SP, Soetaredjo FE, Ismadji S, Ayucitra A, Angkawijaya AE, Ju Y-H, Tran-Nguyen PL (2020) A one-pot synthesis of biodiesel from leather tanning waste using supercritical ethanol: process optimization. Biomass Bioenerg 142:105761. https://doi.org/10.1016/j.biombioe.2020.105761

    Article  CAS  Google Scholar 

  69. Espootin S, Sameti M, Zaker S (2021) Biodiesel from fish waste oil: synthesis via supercritical methanol and thermodynamic optimization. Clean Energy 5:187–195. https://doi.org/10.1093/ce/zkab003

    Article  Google Scholar 

  70. Singh D, Sharma D, Soni SL, Sharma S, Kumari D (2019) Chemical compositions, properties, and standards for different generation biodiesels: a review. Fuel 253:60–71. https://doi.org/10.1016/j.fuel.2019.04.174

    Article  CAS  Google Scholar 

  71. Binhweel F, Bahadi M, Pyar H, Alsaedi A, Hossain S, Ahmad MI (2021) A comparative review of some physicochemical properties of biodiesels synthesized from different generations of vegetative oils. J Phys Conf Ser 1900:12009. https://doi.org/10.1088/1742-6596/1900/1/012009

    Article  CAS  Google Scholar 

  72. Banković-Ilić IB, Stojković IJ, Stamenković OS, Veljkovic VB, Hung Y-T (2014) Waste animal fats as feedstocks for biodiesel production. Renew Sustain energy Rev 32:238–254. https://doi.org/10.1016/j.rser.2014.01.038

    Article  CAS  Google Scholar 

  73. Bhatti HN, Hanif MA, Qasim M, Ata-ur-Rehman (2008) Biodiesel production from waste tallow. Fuel 87:2961–2966. https://doi.org/10.1016/j.fuel.2008.04.016

    Article  CAS  Google Scholar 

  74. Parthiban S, Miranda LR (2011) Poultry fat—a cheap and viable source for biodiesel production. In 2nd International Conference on Environmental Science and Technology, 2011, vol. 6

  75. Selvakumar MJ, Alexis SJ (2016) Biodiesel from goat and sheep fats and its effect on engine performance and exhaust emissions. Int J Adv Engg Tech 988:993

    Google Scholar 

  76. Gad MS, EL-Seesy AI, H. Hashish MA, He Z, Alshaer WG (2021) Combustion and emissions aspects of a diesel engine working with sheep fat oil biodiesel-diesel blends. Case Stud. Therm. Eng 101162https://doi.org/10.1016/j.csite.2021.101162

  77. Behçet R, Oktay H, Çakmak A, Aydin H (2015) Comparison of exhaust emissions of biodiesel–diesel fuel blends produced from animal fats. Renew Sustain Energy Rev 46:157–165. https://doi.org/10.1016/j.rser.2015.02.015

    Article  CAS  Google Scholar 

  78. Komariah LN, Arita S, Prianda BE, Dewi TK (2021) Technical assessment of biodiesel storage tank; a corrosion case study. J King Saud Univ - Eng Sci. https://doi.org/10.1016/j.jksues.2021.03.016

    Article  Google Scholar 

  79. Shahir VK, Jawahar CP, Suresh PR, Vinod V (2017) Experimental investigation on performance and emission characteristics of a common rail direct injection engine using animal fat biodiesel blends. Energy Procedia 117:283–290. https://doi.org/10.1016/j.egypro.2017.05.133

    Article  CAS  Google Scholar 

  80. Yaashikaa PR, Kumar PS, Karishma S (2022) Bio-derived catalysts for production of biodiesel: a review on feedstock, oil extraction methodologies, reactors and lifecycle assessment of biodiesel. Fuel 316:123379. https://doi.org/10.1016/j.fuel.2022.123379

    Article  CAS  Google Scholar 

  81. Karthickeyan V (2019) Effect of combustion chamber bowl geometry modification on engine performance, combustion and emission characteristics of biodiesel fuelled diesel engine with its energy and exergy analysis. Energy 176:830–852. https://doi.org/10.1016/j.energy.2019.04.012

    Article  CAS  Google Scholar 

  82. El-Galad MI, El-Khatib KM, El-Sheltawy ST (2022) Techno-economic and sensitivity analyses of different biodiesel production pathways by adding tetrahydrofuran as a cosolvent. BioEnergy Res. https://doi.org/10.1007/s12155-022-10423-3

    Article  Google Scholar 

  83. Al-attab K, Wahas A, Almoqry N, Alqubati S (2017) Biodiesel production from waste cooking oil in Yemen: a techno-economic investigation. Biofuels 8:17–27. https://doi.org/10.1080/17597269.2016.1196326

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank ministry of higher education in Malaysia (grant number FRGS/1/2022/STG05/USM/02/9) for funding this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by Fozy Binhweel, Md. Sohrab Hossain, and Mardiana Idayu Ahmad. The first draft of the manuscript was written by Fozy Binhweel, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mardiana Idayu Ahmad.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binhweel, F., Hossain, M.S. & Ahmad, M.I. Recent Trends, Potentials, and Challenges of Biodiesel Production from Discarded Animal Fats: a Comprehensive Review. Bioenerg. Res. 16, 778–800 (2023). https://doi.org/10.1007/s12155-022-10527-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10527-w

Keywords

Navigation