Skip to main content

Advertisement

Log in

Influence of Reaction Time, Temperature, and Heavy Metal Zinc on Characteristics of Cellulose- and Wood-Derived Hydrochars from Hydrothermal Carbonization

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract 

Hydrothermal carbonization (HTC) is a promising technique to convert biomass into valuable solid fuels. In this work, cellulose- and wood-derived hydrochars were synthesized under hydrothermal carbonization conditions with different temperatures (200–250 °C) and reaction times (6 h or 12 h). The content of fixed carbon in the cellulose-derived hydrochar is higher than that of the wood-derived hydrochar. Moreover, cellulose can be carbonized more easily during the HTC reaction than wood. O/C and H/C ratios of all hydrochars were similar to those of lignite and decreased with increasing reaction temperature. The composition of solids recovered after 12 h is similar at all temperatures, consisting primarily of sp2 carbons (furanic and aromatic groups) and alkyl groups. When a large amount of metal is introduced, except for part of the zinc combined with the energetic group, the remaining part will condense on the surface of the sample as zinc ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

All the data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Tekin K, Karagöz S, Bektaş S (2014) A review of hydrothermal biomass processing. Renew Sustain Energy Rev 40:673–687. https://doi.org/10.1016/j.rser.2014.07.216

    Article  CAS  Google Scholar 

  2. Saxena RC, Adhikari DK, Goyal HB (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sustain Energy Rev 13:167–178. https://doi.org/10.1016/j.rser.2007.07.011

    Article  CAS  Google Scholar 

  3. Lehmann J (2007) A handful of carbon. Nature 447:143–144. https://doi.org/10.1038/447143a

    Article  CAS  PubMed  Google Scholar 

  4. Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol 45:9473–9483. https://doi.org/10.1021/es201792c

    Article  CAS  PubMed  Google Scholar 

  5. Wang T, Zhai Y, Zhu Y et al (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev 90:223–247. https://doi.org/10.1016/j.rser.2018.03.071

    Article  CAS  Google Scholar 

  6. Zhao P, Shen Y, Ge S et al (2014) Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Appl Energy 131:345–367. https://doi.org/10.1016/j.apenergy.2014.06.038

    Article  CAS  Google Scholar 

  7. Kwietniewska E, Tys J (2014) Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew Sustain Energy Rev 34:491–500. https://doi.org/10.1016/j.rser.2014.03.041

    Article  CAS  Google Scholar 

  8. Liu F, Yu R, Ji X, Guo M (2018) Hydrothermal carbonization of holocellulose into hydrochar: structural, chemical characteristics, and combustion behavior. Bioresour Technol 263:508–516. https://doi.org/10.1016/j.biortech.2018.05.019

    Article  CAS  PubMed  Google Scholar 

  9. Nizamuddin S, Baloch HA, Griffin GJ et al (2017) An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew Sustain Energy Rev 73:1289–1299. https://doi.org/10.1016/j.rser.2016.12.122

    Article  CAS  Google Scholar 

  10. Kang S, Li X, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Ind Eng Chem Res 51:9023–9031. https://doi.org/10.1021/ie300565d

    Article  CAS  Google Scholar 

  11. Wang Q, Li H, Chen L, Huang X (2001) Monodispersed hard carbon spherules with uniform nanopores. Carbon N Y 39:2211–2214. https://doi.org/10.1016/S0008-6223(01)00040-9

    Article  CAS  Google Scholar 

  12. Hu B, Wang K, Wu L et al (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828. https://doi.org/10.1002/adma.200902812

    Article  CAS  PubMed  Google Scholar 

  13. Sharma HB, Sarmah AK, Dubey B (2020) Hydrothermal carbonization of renewable waste biomass for solid biofuel production: a discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renew Sustain Energy Rev 123:109761. https://doi.org/10.1016/j.rser.2020.109761

    Article  CAS  Google Scholar 

  14. Ischia G, Fiori L (2020) Hydrothermal carbonization of organic waste and biomass: a review on process, reactor, and plant modeling. Waste Biomass Valorization. https://doi.org/10.1007/s12649-020-01255-3

  15. Bergius F (1928) Beiträge zur Theorie der Kohleentstehung. Naturwissenschaften 16:1–10. https://doi.org/10.1007/BF01504496

    Article  CAS  Google Scholar 

  16. Berl E, Schmidt A (1928) Über das Verhalten der Cellulose bei der Druckerhitzung mit Wasser. Justus Liebigs Ann Chem 461:192–220. https://doi.org/10.1002/jlac.19284610110

    Article  CAS  Google Scholar 

  17. Berl E, Schmidt A, Koch H (1932) Über die entstehung der kohlen. Angew Chemie 45:517–519. https://doi.org/10.1002/ange.19320453202

    Article  CAS  Google Scholar 

  18. Berl E, Schmidt A (1932) Über die entstehung der kohlen. II. Die inkohlung von cellulose und lignin in neutralem medium. Justus Liebigs Ann Chem 493:97–123. https://doi.org/10.1002/jlac.19324930106

    Article  CAS  Google Scholar 

  19. Berl E, Schmidt A (1932) Über die Entstehung der Kohlen. III. Die Inkohlung von Harzen und Wachsen in neutralem Medium. Justus Liebigs Ann Chem 493:124–135. https://doi.org/10.1002/jlac.19324930107

    Article  CAS  Google Scholar 

  20. Dr. Hans Bode (1932) Die Inkohlung eine Druckverschwelung? 388–390. https://doi.org/10.1002/ange.19320452303

  21. Cohen AD, Bailey AM (1997) Petrographic changes induced by artificial coalification of peat: comparison of two planar facies (Rhizophora and Cladium) from the Everglades-mangrove complex of Florida and a domed facies (Cyrilla) from the Okefenokee Swamp of Georgia. Int J Coal Geol 34:163–194. https://doi.org/10.1016/S0166-5162(97)00022-0

    Article  CAS  Google Scholar 

  22. A Davis WS (1964) Role of cellulosic+ lignitic components of wood in artificial coalification. 43:215–224

  23. Erdmann E (1924) Der genetische Zusammenhang von Braunkohle und Steinkohle auf Grund neuer Versuche. Brennstoff-Chemie 5:177–186. https://doi.org/10.1016/j.fuel.2021.120600

    Article  CAS  Google Scholar 

  24. Hwang I-H, Aoyama H, Matsuto T et al (2012) Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water. Waste Manag 32:410–416. https://doi.org/10.1016/j.wasman.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  25. Berge ND, Ro KS, Mao J et al (2011) Hydrothermal carbonization of municipal waste streams. Environ Sci Technol 45:5696–5703. https://doi.org/10.1021/es2004528

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Wang S, Yuan X et al (2018) The effects of temperature and color value on hydrochars’ properties in hydrothermal carbonization. Bioresour Technol 249:574–581. https://doi.org/10.1016/j.biortech.2017.10.046

    Article  CAS  PubMed  Google Scholar 

  27. Lu X, Pellechia PJ, Flora JRV, Berge ND (2013) Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose. Bioresour Technol 138:180–190. https://doi.org/10.1016/j.biortech.2013.03.163

    Article  CAS  PubMed  Google Scholar 

  28. Reza MT, Rottler E, Herklotz L, Wirth B (2015) Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide. Bioresour Technol 182:336–344. https://doi.org/10.1016/j.biortech.2015.02.024

    Article  CAS  PubMed  Google Scholar 

  29. Yan W, Perez S, Sheng K (2017) Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: dry torrefaction and hydrothermal carbonization. Fuel 196:473–480. https://doi.org/10.1016/j.fuel.2017.02.015

    Article  CAS  Google Scholar 

  30. Oliveira I, Blöhse D, Ramke H-G (2013) Hydrothermal carbonization of agricultural residues. Bioresour Technol 142:138–146. https://doi.org/10.1016/j.biortech.2013.04.125

    Article  CAS  PubMed  Google Scholar 

  31. Peng C, Zhai Y, Zhu Y et al (2016) Production of char from sewage sludge employing hydrothermal carbonization: char properties, combustion behavior and thermal characteristics. Fuel 176:110–118. https://doi.org/10.1016/j.fuel.2016.02.068

    Article  CAS  Google Scholar 

  32. Jin Y, Lu L, Ma X et al (2013) Effects of blending hydrothermally treated municipal solid waste with coal on co-combustion characteristics in a lab-scale fluidized bed reactor. Appl Energy 102:563–570. https://doi.org/10.1016/j.apenergy.2012.08.026

    Article  CAS  Google Scholar 

  33. Gil-Lalaguna N, Sánchez JL, Murillo MB et al (2014) Energetic assessment of air-steam gasification of sewage sludge and of the integration of sewage sludge pyrolysis and air-steam gasification of char. Energy 76:652–662. https://doi.org/10.1016/j.energy.2014.08.061

    Article  CAS  Google Scholar 

  34. Mai D, Wen R, Cao W et al (2017) Effect of heavy metal (Zn) on redox property of hydrochar produced from lignin, cellulose, and d-Xylose. ACS Sustain Chem Eng 5:3499–3508. https://doi.org/10.1021/acssuschemeng.7b00204

    Article  CAS  Google Scholar 

  35. Kalderis D, Kotti MS, Méndez A, Gascó G (2014) Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth 5:477. https://doi.org/10.5194/se-5-477-2014

    Article  Google Scholar 

  36. Xiao L-P, Shi Z-J, Xu F, Sun R-C (2012) Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 118:619–623. https://doi.org/10.1016/j.biortech.2012.05.060

    Article  CAS  PubMed  Google Scholar 

  37. He C, Giannis A, Wang J-Y (2013) Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior. Appl Energy 111:257–266. https://doi.org/10.1016/j.apenergy.2013.04.084

    Article  CAS  Google Scholar 

  38. Gao Y, Wang X-H, Yang H-P, Chen H-P (2012) Characterization of products from hydrothermal treatments of cellulose. Energy 42:457–465. https://doi.org/10.1016/j.energy.2012.03.023

    Article  CAS  Google Scholar 

  39. Liu F, Guo M (2015) Comparison of the characteristics of hydrothermal carbons derived from holocellulose and crude biomass. J Mater Sci 50:1624–1631. https://doi.org/10.1007/s10853-014-8723-0

    Article  CAS  Google Scholar 

  40. Sevilla M, Maciá-Agulló JA, Fuertes AB (2011) Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenerg 35:3152–3159. https://doi.org/10.1016/j.biombioe.2011.04.032

    Article  CAS  Google Scholar 

  41. Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon N Y 47:2281–2289. https://doi.org/10.1016/j.carbon.2009.04.026

    Article  CAS  Google Scholar 

  42. Ibarra JV, Miranda JL (1996) Detection of weathering in stockpiled coals by Fourier transform infrared spectroscopy. Vib Spectrosc 10:311–318. https://doi.org/10.1016/0924-2031(95)00060-7

    Article  CAS  Google Scholar 

  43. Poletto M, Zattera AJ, Santana RMC (2012) Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J Appl Polym Sci 126:E337–E344. https://doi.org/10.1002/app.36991

    Article  CAS  Google Scholar 

  44. Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chemie 116:607–611. https://doi.org/10.1002/ange.200352386

    Article  Google Scholar 

  45. Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46:7939–7954. https://doi.org/10.1021/es301029g

    Article  CAS  PubMed  Google Scholar 

  46. Vohs JM, Barteau MA (1989) Activation of aromatics on the polar surfaces of zinc oxide. J Phys Chem 93:8343–8354. https://doi.org/10.1021/j100363a013

Download references

Funding

This work has been performed in the framework of the HotVeGas Project supported by Bundesministerium für Wirtschaft und Technologie (FKZ 0327773).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Huang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Statement of Novelty

There is limited research which has studied the format of heavy metals in wood- and cellulose-derived hydrochar during the HTC process and the release behavior of heavy metals under high temperatures. The impact of the reaction time, temperature, and heavy metal on characteristics of productions are systematically investigated. At high temperature, the properties of hydrochars are similar to lignite-like fuel substances. The heavy metal element zinc is chosen to introduce into samples to simulate the heavy metal accumulation in biomass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Huang, J., Li, Z. et al. Influence of Reaction Time, Temperature, and Heavy Metal Zinc on Characteristics of Cellulose- and Wood-Derived Hydrochars from Hydrothermal Carbonization. Bioenerg. Res. 16, 856–864 (2023). https://doi.org/10.1007/s12155-022-10482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10482-6

Keywords

Navigation