Skip to main content
Log in

Conditional drug screening shows that mitotic inhibitors induce AKT/PKB-insensitive apoptosis

  • Original Article
  • Published:
Journal of Chemical Biology

Abstract

The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is frequently upregulated in human cancer. Activation of this pathway has been reported to be associated with resistance to various chemotherapeutical agents. We here used a chemical biology/chemical informatic approach to identify apoptotic mechanisms that are insensitive to activation of the PI3K/AKT pathway. The National Cancer Institute (NCI) Mechanistic Set drug library was screened for agents that induce apoptosis in colon carcinoma cells expressing a constitutively active form of AKT1. The cytotoxicity screening data available as self-organized maps at the Developmental Therapeutics Program (DTP) of the NCI was then used to classify the identified compounds according to mechanism of action. The results showed that drugs that interfere with the mitotic process induce apoptosis which is comparatively insensitive to constitutive AKT1 activity. The conditional screening approach described here is expected to be useful for identifying relationships between the state of activation of signaling pathways and sensitivity to anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altomare DA, You H, Xiao GH, Ramos-Nino ME, Skele KL, De Rienzo A, Jhanwar SC, Mossman BT, Kane AB, Testa JR (2005) Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene 24:6080–6089

    Article  CAS  Google Scholar 

  2. Asselin E, Mills GB, Tsang BK (2001) XIAP regulates Akt activity and caspase-3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. Cancer Res 61:1862–1868

    CAS  Google Scholar 

  3. Auld CA, Hopkins RG, Fernandes KM, Morrison RF (2006) Novel effect of helenalin on Akt signaling and Skp2 expression in 3 T3–L1 preadipocytes. Biochem Biophys Res Commun 346:314–320

    Article  CAS  Google Scholar 

  4. Belyanskaya LL, Hopkins-Donaldson S, Kurtz S, Simoes-Wust AP, Yousefi S, Simon HU, Stahel R, Zangemeister-Wittke U (2005) Cisplatin activates Akt in small cell lung cancer cells and attenuates apoptosis by survivin upregulation. Int J Cancer 117:755–637

    Article  CAS  Google Scholar 

  5. Borisy AA, Elliott PJ, Hurst NW, Lee MS, Lehar J, Price ER, Serbedzija G, Zimmermann GR, Foley MA, Stockwell BR, Keith CT (2003) Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci U S A 100:7977–7982

    Article  CAS  Google Scholar 

  6. Brognard J, Clark AS, Ni Y, Dennis PA (2001) Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 61:3986–3997

    CAS  Google Scholar 

  7. Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5:231–237

    Article  CAS  Google Scholar 

  8. Chekenya M, Krakstad C, Svendsen A, Netland IA, Staalesen V, Tysnes BB, Selheim F, Wang J, Sakariassen PO, Sandal T, Lonning PE, Flatmark T, Enger PO, Bjerkvig R, Sioud M, Stallcup WB (2008) The progenitor cell marker NG2/MPG promotes chemoresistance by activation of integrin-dependent PI3K/Akt signaling. Oncogene 27:5182–5194

    Article  CAS  Google Scholar 

  9. Chen RH, Su YH, Chuang RL, Chang TY (1998) Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway. Oncogene 17:1959–1968

    Article  CAS  Google Scholar 

  10. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665

    Article  CAS  Google Scholar 

  11. Duronio V (2008) The life of a cell: apoptosis regulation by the PI3K/PKB pathway. Biochem J 415:333–344

    Article  CAS  Google Scholar 

  12. Fraser M, Bai T, Tsang BK (2008) Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int J Cancer 122:534–546

    Article  CAS  Google Scholar 

  13. Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15:1406–1418

    Article  CAS  Google Scholar 

  14. Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH, Nicke B, Nye E, Stamp G, Alitalo K, Downward J (2007) Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129:957–968

    Article  CAS  Google Scholar 

  15. Hansen JB, Langvad E, Frandsen F, Buchardt O (1983) 9-acridinyl and 2-methoxy-6-chloro-9-acridinyl derivatives of aliphatic di-, tri-, and tetraamines. Chemistry, cytostatic activity, and schistosomicidal activity. J Med Chem 26:1510–1514

    Article  CAS  Google Scholar 

  16. Hausler P, Papoff G, Eramo A, Reif K, Cantrell DA, Ruberti G (1998) Protection of CD95-mediated apoptosis by activation of phosphatidylinositide 3-kinase and protein kinase B. Eur J Immunol 28:57–69

    Article  CAS  Google Scholar 

  17. Houghton P, Fang R, Techatanawat I, Steventon G, Hylands PJ, Lee CC (2007) The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods 42:377–387

    Article  CAS  Google Scholar 

  18. Huang R, Wallqvist A, Thanki N, Covell DG (2005) Linking pathway gene expressions to the growth inhibition response from the National Cancer Institute’s anticancer screen and drug mechanism of action. Pharmacogenomics J 5:381–399

    Article  CAS  Google Scholar 

  19. Hägg M, Biven K, Ueno T, Rydlander L, Björklund P, Wiman KG, Shoshan M, Linder S (2002) A novel high-through-put assay for screening of pro-apoptotic drugs. Invest New Drugs 20:253–259

    Article  Google Scholar 

  20. Itokawa H, Ichihara Y, Mochizuki M, Enomori T, Morita H, Shirota O, Inamatsu M, Takeya K (1991) A cytotoxic substance from Sangre de Grado. Chem Pharm Bull (Tokyo) 39:1041–1042

    CAS  Google Scholar 

  21. Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J, Evan G (1997) Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3) K and PKB. Nature 385:544–548

    Article  CAS  Google Scholar 

  22. Kennedy SG, Kandel ES, Cross TK, Hay N (1999) Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 19:5800–5810

    CAS  Google Scholar 

  23. Kim S, Lee TJ, Park JW, Kwon TK (2008) Overexpression of cFLIPs inhibits oxaliplatin-mediated apoptosis through enhanced XIAP stability and Akt activation in human renal cancer cells. J Cell Biochem 105:971–979

    Article  CAS  Google Scholar 

  24. Kohonen T, Somervuo P (2002) How to make large self-organizing maps for nonvectorial data. Neural Netw 15:945–952

    Article  Google Scholar 

  25. Lee MW, Kim DS, Min NY, Kim HT (2008) Akt1 inhibition by RNA interference sensitizes human non-small cell lung cancer cells to cisplatin. Int J Cancer 122:2380–2384

    Article  CAS  Google Scholar 

  26. Li L, Ross AH (2007) Why is PTEN an important tumor suppressor? J Cell Biochem 102:1368–1374

    Article  CAS  Google Scholar 

  27. Morse DL, Gray H, Payne CM, Gillies RJ (2005) Docetaxel induces cell death through mitotic catastrophe in human breast cancer cells. Mol Cancer Ther 4:1495–1504

    Article  CAS  Google Scholar 

  28. Nakashima T, Miura M, Hara M (2000) Tetrocarcin A inhibits mitochondrial functions of Bcl-2 and suppresses its anti-apoptotic activity. Cancer Res 60:1229–1235

    CAS  Google Scholar 

  29. Ohta T, Ohmichi M, Hayasaka T, Mabuchi S, Saitoh M, Kawagoe J, Takahashi K, Igarashi H, Du B, Doshida M, Mirei IG, Motoyama T, Tasaka K, Kurachi H (2006) Inhibition of phosphatidylinositol 3-kinase increases efficacy of cisplatin in in vivo ovarian cancer models. Endocrinology 147:1761–1769

    Article  CAS  Google Scholar 

  30. Olofsson MH, Havelka AM, Brnjic S, Shoshan MC, Linder S (2008) Charting calcium-regulated apoptosis pathways using chemical biology: role of calmodulin kinase II. BMC Chem Biol 8:2

    Article  Google Scholar 

  31. Parcellier A, Tintignac LA, Zhuravleva E, Hemmings BA (2008) PKB and the mitochondria: AKTing on apoptosis. Cell Signal 20:21–30

    Article  CAS  Google Scholar 

  32. Rabow AA, Shoemaker RH, Sausville EA, Covell DG (2002) Mining the National Cancer Institute’s tumor-screening database: identification of compounds with similar cellular activities. J Med Chem 45:818–840

    Article  CAS  Google Scholar 

  33. Rajagopalan R, Gurnani S (1986) Inhibition of microtubule assembly by actinomycin D, an anti-tumour drug. Chem Biol Interact 60:201–206

    Article  CAS  Google Scholar 

  34. Ramjaun AR, Downward J (2007) Ras and phosphoinositide 3-kinase: partners in development and tumorigenesis. Cell Cycle 6:2902–2905

    CAS  Google Scholar 

  35. Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 4:303–313

    Article  CAS  Google Scholar 

  36. Schmidt M, Hovelmann S, Beckers TL (2002) A novel form of constitutively active farnesylated Akt1 prevents mammary epithelial cells from anoikis and suppresses chemotherapy-induced apoptosis. Br J Cancer 87:924–932

    Article  CAS  Google Scholar 

  37. Shoshan MC, Linder S (2008) Target specificity and off-target effects as determinants of cancer drug efficacy. Expert Opin Drug Metab Toxicol 4:273–280

    Article  CAS  Google Scholar 

  38. VanderWeele DJ, Zhou R, Rudin CM (2004) Akt up-regulation increases resistance to microtubule-directed chemotherapeutic agents through mammalian target of rapamycin. Mol Cancer Ther 3:1605–1613

    CAS  Google Scholar 

  39. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–5510

    Article  CAS  Google Scholar 

  40. Zhang YM, He LC (2007) Study on thaspine in inducing apoptosis of A549 cell]. Zhong Yao Cai 30:429–432

    CAS  Google Scholar 

  41. Zhao L, Vogt PK (2008) Class I PI3K in oncogenic cellular transformation. Oncogene 27:5486–5496

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Nissim Hay is gratefully acknowledged for the gift of parental and transfected HCT116 myr-AKT cells and Dr. Katja Pokrovskaja is gratefully acknowledged for the gift of the antibody to phosphorylated GSK3β. Grant were received from Cancerfonden, Radiumhemmets forskningsfonder, Vetenskapsrådet and EUFP6 (Chemores, LSHC-CT-2007-037665).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stig Linder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berndtsson, M., Hernlund, E., Shoshan, M.C. et al. Conditional drug screening shows that mitotic inhibitors induce AKT/PKB-insensitive apoptosis. J Chem Biol 2, 81–87 (2009). https://doi.org/10.1007/s12154-009-0017-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-009-0017-7

Keywords

Navigation