Skip to main content

Advertisement

Log in

Development and application of a fully automatic multi-function cassette module Mortenon M1 for radiopharmaceutical synthesis

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Introduction

Functions of existing automatic module systems for synthesis of radiopharmaceuticals mainly focus on the radiolabeling of small molecules. There are few modules which have achieved full-automatic radiolabeling of non-metallic and metallic nuclides on small molecules, peptides, and antibody drugs. This study aimed to develop and test a full-automatic multifunctional module system for the safe, stable, and efficient production of radiopharmaceuticals.

Methods

According to characteristics of labeling process of radioactive drugs, using UG and Solidworks softwares, full-automatic cassette-based synthesis module system Mortenon M1 for synthesis of radiopharmaceuticals with various radionuclides, was designed and tested. Mortenon M1 has at least three significant highlights: the cassettes are disposable, and there is no need of manual cleaning; the synthesis method program is flexible and can be edited freely by users according to special needs; this module system is suitable for radiolabeling of both small-molecule and macromolecular drugs, with potentially various radionuclides including 18F, 64Cu, 68Ga, 89Zr, 177Lu, etc. By program control methods for certain drugs, Mortenon M1 was used for radiolabeling of both small-molecule drugs such as [68Ga]-FAPI-46 and macromolecular drugs such as [89Zr]-TROP2 antibody. Quality control assays for product purity were performed with radio-iTLC and radio-HPLC, and the radiotracers were confirmed for application in microPET imaging in xenograft tumor-bearing mouse models.

Results

Functional tests for Mortenon M1 module system were conducted, with [68Ga]-FAPI-46 and [89Zr]-TROP2 antibody as goal synthetic products, and it displayed that with the cassette modules, the preset goals could be achieved successfully. The radiolabeling synthesis yield was good ([68Ga]-FAPI-46, 70.63% ± 2.85%, n = 10; [89Zr]-TROP2, 82.31% ± 3.92%, n = 10), and the radiochemical purity via radio-iTLC assay of the radiolabeled products was above 99% after purification. MicroPET imaging results showed that the radiolabeled tracers had reasonable radioactive distribution in MDA-MB-231 and SNU-620 xenograft tumor-bearing mice, and the tumor targeted radiouptake was satisfactory for diagnosis.

Conclusion

This study demonstrated that the full-automatic module system Mortenon M1 is efficient for radiolabeling synthesis of both small-molecule and macromolecular substrates. It may be helpful to reduce radiation exposure for safety, provide qualified radiolabeled products and reliable PET diagnosis, and ensure stable production and supply of radiopharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Data are contained within the article, and the datasets used and/or analyzed during the current study are available from the corresponding authors on reasonable request.

Abbreviations

%ID/g:

Percentage of injected radioactivity dose per gram

FAPI:

Fibroblast activation protein inhibitor

GMP:

Good manufacturing practice of medical products

HEPES:

2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid

iTLC:

Instant thin-layer chromatography

OD:

Outside diameter

PET:

Positron emission tomography

PLC:

Programmable logic controller

Radio-HPLC:

Radioactive high-performance liquid chromatography

ROIs:

Regions of interest

RT:

Retention time

TROP2:

Trophoblast cell-surface antigen-2

References

  1. Sun R, Henry T, Laville A, Carré A, Hamaoui A, Bockel S, et al. Imaging approaches and radiomics: toward a new era of ultraprecision radioimmunotherapy? J Immunother Cancer. 2022;10(7): e004848. https://doi.org/10.1136/jitc-2022-004848. (PMID: 35793875).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zaheer J, Kim H, Lee YJ, Kim JS, Lim SM. Combination radioimmunotherapy strategies for solid tumors. Int J Mol Sci. 2019;20(22):5579. https://doi.org/10.3390/ijms20225579. (PMID: 31717302).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. ter Heine R, Lange R, Breukels OB, Bloemendal HJ, Rummenie RG, Wakker AM, et al. Bench to bedside development of GMP grade Rhenium-188-HEDP, a radiopharmaceutical for targeted treatment of painful bone metastases. Int J Pharm. 2014;465(1–2):317–24. https://doi.org/10.1016/j.ijpharm.2014.01.034. (PMID: 24560635).

    Article  CAS  PubMed  Google Scholar 

  4. Wang YF, Chuang MH, Chiu JS, Cham TM, Chung MI. On-site preparation of technetium-99m labeled human serum albumin for clinical application. Tohoku J Exp Med. 2007;211(4):379–85. https://doi.org/10.1620/tjem.211.379. (PMID: 17409678).

    Article  CAS  PubMed  Google Scholar 

  5. Revunov E, Jørgensen JT, Jensen AI, Hansen AE, Severin GW, Kjær A, et al. Automated synthesis and PET evaluation of both enantiomers of [18F]FMISO. Nucl Med Biol. 2015;42(4):413–9. https://doi.org/10.1016/j.nucmedbio.2014.12.010. (PMID: 25595134).

    Article  CAS  PubMed  Google Scholar 

  6. Sharma S. PET radiopharmaceuticals for personalized medicine. Curr Drug Targets. 2016;17(16):1894–907. https://doi.org/10.2174/1389450117666160720091233. (PMID: 27440185).

    Article  CAS  PubMed  Google Scholar 

  7. Toyohara J, Nishino K, Sakai M, Tago T, Oda T. Automated production of [18F]MK-6240 on CFN-MPS200. Appl Radiat Isot. 2021;168: 109468. https://doi.org/10.1016/j.apradiso.2020.109468. (PMID: 33285465).

    Article  CAS  PubMed  Google Scholar 

  8. Yue X, Nikam RM, Kecskemethy HH, Kandula VVR, Falchek SJ, Averill LW, et al. Radiosynthesis of 1-(2-[18F]Fluoroethyl)-L-Tryptophan using a one-pot, two-step protocol. J Vis Exp. 2021. https://doi.org/10.3791/63025.

    Article  PubMed  Google Scholar 

  9. Da Pieve C, Costa Braga M, Turton DR, Valla FA, Cakmak P, Plate KH, et al. New fully automated preparation of high apparent molar activity 68Ga-FAPI-46 on a Trasis AiO platform. Molecules. 2022;27(3):675. https://doi.org/10.3390/molecules27030675. (PMID: 35163938).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patt M, Schildan A, Habermann B, Fischer S, Hiller A, Deuther-Conrad W, et al. Fully automated radiosynthesis of both enantiomers of [18F]Flubatine under GMP conditions for human application. Appl Radiat Isot. 2013;80:7–11. https://doi.org/10.1016/j.apradiso.2013.05.009. (PMID: 23792828).

    Article  CAS  PubMed  Google Scholar 

  11. Cardinale J, Martin R, Remde Y, Schäfer M, Hienzsch A, Hübner S, et al. Procedures for the GMP-compliant production and quality control of [18F]PSMA-1007: a next generation radiofluorinated tracer for the detection of prostate cancer. Pharmaceuticals (Basel). 2017;10(4):77. https://doi.org/10.3390/ph10040077. (PMID: 28953234).

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura T, Matsumura T, Yamamoto Y, Senda M. Safety and effectiveness of NEPTIS Plug-01 and Florbetapir (18F) in daily clinical setting: based on the post-marketing surveillance study. Kaku Igaku. 2019;56(1):127–34. https://doi.org/10.18893/kakuigaku.oa.1802. (PMID: 31554771).

    Article  PubMed  Google Scholar 

  13. Mueller D, Breeman WA, Klette I, Gottschaldt M, Odparlik A, Baehre M, et al. Radiolabeling of DOTA-like conjugated peptides with generator-produced 68Ga and using NaCl-based cationic elution method. Nat Protoc. 2016;11(6):1057–66. https://doi.org/10.1038/nprot.2016.060. (PMID: 27172166).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferdinandus J, Kessler L, Hirmas N, Trajkovic-Arsic M, Hamacher R, Umutlu L, et al. Equivalent tumor detection for early and late FAPI-46 PET acquisition. Eur J Nucl Med Mol Imaging. 2021;48(10):3221–7. https://doi.org/10.1007/s00259-021-05266-7. (PMID: 33620560).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen W, Li M, Younis MH, Barnhart TE, Jiang D, Sun T, et al. ImmunoPET of trophoblast cell-surface antigen 2 (Trop-2) expression in pancreatic cancer. Eur J Nucl Med Mol Imaging. 2022;49(3):861–70. https://doi.org/10.1007/s00259-021-05563-1. (PMID: 34519889).

    Article  CAS  PubMed  Google Scholar 

  16. Leung K. 89Zr-Desferrioxamine-anti-epithelial glycoprotein-1 hRS7 humanized monoclonal antibody. 2012 Jan 15 [updated 2012 Apr 19]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. PMID: 22536615.

  17. Cagnolini A, Chen J, Ramos K, Skedzielewski TM, Lantry LE, Nunn AD, et al. Automated synthesis, characterization and biological evaluation of [(68)Ga]Ga-AMBA, and the synthesis and characterization of (nat)Ga-AMBA and [(67)Ga]Ga-AMBA. Appl Radiat Isot. 2010;68(12):2285–92. https://doi.org/10.1016/j.apradiso.2010.06.023. (PMID: 20638858).

    Article  CAS  PubMed  Google Scholar 

  18. Lazari M, Quinn KM, Claggett SB, Collins J, Shah GJ, Herman HE, et al. ELIXYS - a fully automated, three-reactor high-pressure radiosynthesizer for development and routine production of diverse PET tracers. EJNMMI Res. 2013;3(1):52. https://doi.org/10.1186/2191-219X-3-52. (PMID: 23849185).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu S, Nie D, Jiang S, Tang G. Efficient automated synthesis of 2-(5-[18F]fluoropentyl)-2-methylmalonic acid ([18F]ML-10) on a commercial available [18F]FDG synthesis module. Appl Radiat Isot. 2017;123:49–53. https://doi.org/10.1016/j.apradiso.2017.02.030. (PMID: 28236717).

    Article  CAS  PubMed  Google Scholar 

  20. Alfteimi A, Lützen U, Helm A, Jüptner M, Marx M, Zhao Y, et al. Automated synthesis of [68Ga]Ga-FAPI-46 without pre-purification of the generator eluate on three common synthesis modules and two generator types. EJNMMI Radiopharm Chem. 2022;7(1):20. https://doi.org/10.1186/s41181-022-00172-1. (PMID: 35904684).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aalbersberg EA, van Andel L, Geluk-Jonker MM, Beijnen JH, Stokkel MPM, Hendrikx JJMA. Automated synthesis and quality control of [99mTc]Tc-PSMA for radioguided surgery (in a [68Ga]Ga-PSMA workflow). EJNMMI Radiopharm Chem. 2020;5(1):10. https://doi.org/10.1186/s41181-020-00095-9. (PMID: 32358637).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schwarz SW, Dick D, VanBrocklin HF, Hoffman JM. Regulatory requirements for PET drug production. J Nucl Med. 2014;55(7):1132–7. https://doi.org/10.2967/jnumed.113.132472. (PMID: 24914057).

    Article  PubMed  Google Scholar 

  23. Oh SJ, Chi DY, Mosdzianowski C, Kil HS, Ryu JS, Moon DH. The automatic production of 16alpha-[18F]fluoroestradiol using a conventional [18F]FDG module with a disposable cassette system. Appl Radiat Isot. 2007;65(6):676–81. https://doi.org/10.1016/j.apradiso.2006.06.016. (PMID: 16963265).

    Article  CAS  PubMed  Google Scholar 

  24. Ovdiichuk O, Mallapura H, Pineda F, Hourtané V, Långström B, Halldin C, et al. Implementation of iMiDEV™, a new fully automated microfluidic platform for radiopharmaceutical production. Lab Chip. 2021;21(11):2272–82. https://doi.org/10.1039/d1lc00148e. (PMID: 33912890).

    Article  CAS  PubMed  Google Scholar 

  25. Hoareau R, Shao X, Henderson BD, Scott PJ. Fully automated radiosynthesis of [11C]PBR28, a radiopharmaceutical for the translocator protein (TSPO) 18 kDa, using a GE TRACERlab FXC-Pro. Appl Radiat Isot. 2012;70(8):1779–83. https://doi.org/10.1016/j.apradiso.2012.03.006. (PMID: 22503515).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang X, Basuli F, Shi ZD, Xu B, Blackman B, Choyke PL, et al. Automated synthesis of [(18)F](2S,4R)-4-fluoroglutamine on a GE TRACERlab™ FX-N Pro module. Appl Radiat Isot. 2016;112:110–4. https://doi.org/10.1016/j.apradiso.2016.02.016. (PMID: 27019029).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bruton L, Scott PJH. Automated synthesis modules for PET radiochemistry. In: Handbook of radiopharmaceuticals. 2nd ed. Hoboken, NJ, USA: Wiley; 2020.

    Google Scholar 

  28. Li S, Schmitz A, Lee H, Mach RH. Automation of the radiosynthesis of six different 18F-labeled radiotracers on the AllinOne. EJNMMI Radiopharm Chem. 2017;1(1):15. https://doi.org/10.1186/s41181-016-0018-0. (PMID: 29564391).

    Article  PubMed  Google Scholar 

  29. Shao X, Hoareau R, Hockley BG, Tluczek LJ, Henderson BD, Padgett HC, Scott PJ. Highlighting the versatility of the tracerlab synthesis modules. Part 1: fully automated production of [F]labelled radiopharmaceuticals using a Tracerlab FX(FN). J Labelled Comp Radiopharm. 2011;54(6):292–307. https://doi.org/10.1002/jlcr.1865. (PMID: 21769163).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shao X, Hoareau R, Runkle AC, Tluczek LJM, Hockley BG, Henderson BD, Scott PJH. Highlighting the versatility of the Tracerlab synthesis modules. Part 2: fully automated production of [11C]-labeled radiopharmaceuticals using a Tracerlab FXC-Pro. J Label Compd Radiopharm. 2011;54:819–38. https://doi.org/10.1002/jlcr.1937.

    Article  CAS  Google Scholar 

  31. Krasikova R. Synthesis modules and automation in F-18 labeling. Ernst Scher Res Found Workshop. 2007;62:289–316. https://doi.org/10.1007/978-3-540-49527-7_11. (PMID: 17172160).

    Article  CAS  Google Scholar 

  32. Frank C, Winter G, Rensei F, Samper V, Brooks AF, Hockley BG, Henderson BD, Rensch C, Scott PJH. Development and implementation of ISAR, a new synthesis platform for radiopharmaceutical production. EJNMMI Radiopharm Chem. 2019;4(1):24. https://doi.org/10.1186/s41181-019-0077-0. (PMID: 31659546).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Barnes C, Nair M, Aboagye EO, Archibald SJ, Allott L. A practical guide to automating fluorine-18 PET radiochemistry using commercially available cassette-based platforms. React Chem Eng. 2022;7:2265–79. https://doi.org/10.1039/d2re00219arsc.li/reaction-engineering.

    Article  CAS  Google Scholar 

  34. Boschi S, Lodi F, Malizia C, Cicoria G, Marengo M. Automation synthesis modules review. Appl Radiat Isot. 2013;76:38–45. https://doi.org/10.1016/j.apradiso.2012.09.010. (PMID: 23084477).

    Article  CAS  PubMed  Google Scholar 

  35. Garcia-Arguello SF, Lopez-Lorenzo B, Ruiz-Cruces R. Automated production of [68Ga]Ga-DOTANOC and [68Ga]Ga-PSMA-11 using a TRACERlab FXFN synthesis module. J Labelled Comp Radiopharm. 2019;62(3):146–53. https://doi.org/10.1002/jlcr.3706. (PMID: 30672007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Norroy Bioscience for financial, technical, and material supports.

Author information

Authors and Affiliations

Authors

Contributions

F-BC and S-YY: conceived and designed the modular system, performed most of the tests and experiments, and drafted the manuscript. XL and C-LY helped in tests and experiments, and analyzed data. W-SE gave useful suggestion and discussed the manuscript. Q-HZ: supported in methodology, supervised the project, and revised the manuscript.

Corresponding authors

Correspondence to Shan-You Yu or Qi-Huang Zheng.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest relevant to this article.

Ethical approval

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional Animal Care and Use Committee of the People’s Hospital of Ma Anshan (Batch No.: ME2021-008-012, date of approval: Aug 28, 2021), and all animal experiments were conducted in compliance with the Guide for the Care and Use of Medical Laboratory Animals (Ministry of Health, China) and institutional guidelines. All the animals were maintained under anesthesia during the model-building, tracer injection, and scanning periods to avoid animal suffering.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 800 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, FB., Lv, X., Yan, CL. et al. Development and application of a fully automatic multi-function cassette module Mortenon M1 for radiopharmaceutical synthesis. Ann Nucl Med 38, 247–263 (2024). https://doi.org/10.1007/s12149-023-01893-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-023-01893-2

Keywords

Navigation