Skip to main content

Advertisement

Log in

Development and validation of 18F-FDG PET/CT radiomics-based nomogram to predict visceral pleural invasion in solid lung adenocarcinoma

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to establish a radiomics model based on 18F-FDG PET/CT images to predict visceral pleural invasion (VPI) of solid lung adenocarcinoma preoperatively.

Methods

We retrospectively enrolled 165 solid lung adenocarcinoma patients confirmed by histopathology with 18F-FDG PET/CT images. Patients were divided into training and validation at a ratio of 0.7. To find significant VPI predictors, we collected clinicopathological information and metabolic parameters measured from PET/CT images. Three-dimensional (3D) radiomics features were extracted from each PET and CT volume of interest (VOI). Receiver operating characteristic (ROC) curve was performed to determine the performance of the model. Accuracy, sensitivity, specificity and area under curve (AUC) were calculated. Finally, their performance was evaluated by concordance index (C-index) and decision curve analysis (DCA) in training and validation cohorts.

Results

165 patients were divided into training cohort (n = 116) and validation cohort (n = 49). Multivariate analysis showed that histology grade, maximum standardized uptake value (SUVmax), distance from the lesion to the pleura (DLP) and the radiomics features had statistically significant differences between patients with and without VPI (P < 0.05). A nomogram was developed based on the logistic regression method. The accuracy of ROC curve analysis of this model was 75.86% in the training cohort (AUC: 0.867; C-index: 0.867; sensitivity: 0.694; specificity: 0.889) and the accuracy rate in validation cohort was 71.55% (AUC: 0.889; C-index: 0.819; sensitivity: 0.654; specificity: 0.739).

Conclusions

A PET/CT-based radiomics model was developed with SUVmax, histology grade, DLP, and radiomics features. It can be easily used for individualized VPI prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Kuriyama K, Yanagawa M. CT diagnosis of lung adenocarcinoma: radiologic-pathologic correlation and growth rate. Radiology. 2020;297(1):199–200.

    Article  PubMed  Google Scholar 

  2. Nagano H, Takumi K, Nakajo M, Fukukura Y, Kumagae Y, Jinguji M, et al. Dual-Energy CT-derived electron density for diagnosing metastatic mediastinal lymph nodes in non-small cell lung cancer: comparison with conventional CT and FDG PET/CT findings. AJR Am J Roentgenol. 2022;218(1):66–74.

    Article  PubMed  Google Scholar 

  3. Denisenko T, Budkevich I, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis. 2018;9(2):117.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Masiuk M, Waloszczyk P, Lewandowska M, Dobak E, Urasinska E. Nucleolin and nucleophosmin expression patterns in pulmonary adenocarcinoma invading the pleura and in pleural malignant mesothelioma. Thorac Cancer. 2020;11(9):2529–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang H, Wang T, Hu B, Pan C. Visceral pleural invasion remains a size-independent prognostic factor in stage I non-small cell lung cancer. Ann Thorac Surg. 2015;99(4):1130–9.

    Article  PubMed  Google Scholar 

  6. Lakha S, Gomez J, Flores R, Wisnivesky J. Prognostic significance of visceral pleural involvement in early-stage lung cancer. Chest. 2014;146(6):1619–26.

    Article  PubMed  Google Scholar 

  7. Inoue M, Minami M, Shiono H, Sawabata N, Ideguchi K, Okumura M. Clinicopathologic study of resected, peripheral, small-sized, non-small cell lung cancer tumors of 2 cm or less in diameter: pleural invasion and increase of serum carcinoembryonic antigen level as predictors of nodal involvement. J Thorac Cardiovasc Surg. 2006;131(5):988–93.

    Article  PubMed  Google Scholar 

  8. Neri S, Menju T, Sowa T, Yutaka Y, Nakajima D, Hamaji M, et al. Prognostic impact of microscopic vessel invasion and visceral pleural invasion and their correlations with epithelial-mesenchymal transition, cancer stemness, and treatment failure in lung adenocarcinoma. Lung Cancer. 2019;128:13–9.

    Article  PubMed  Google Scholar 

  9. Travis WD, Brambilla E, Rami-Porta R, Vallieres E, Tsuboi M, Rusch V, et al. Visceral pleural invasion: pathologic criteria and use of elastic stains: proposal for the 7th edition of the TNM classification for lung cancer. J Thorac Oncol. 2008;3(12):1384–90.

    Article  PubMed  Google Scholar 

  10. Choi H, Kim H, Hong W, Park J, Hwang EJ, Park CM, et al. Prediction of visceral pleural invasion in lung cancer on CT: deep learning model achieves a radiologist-level performance with adaptive sensitivity and specificity to clinical needs. Eur Radiol. 2021;31(5):2866–76.

    Article  PubMed  Google Scholar 

  11. Iizuka S, Kawase A, Oiwa H, Ema T, Shiiya N, Funai K. A risk scoring system for predicting visceral pleural invasion in non-small lung cancer patients. Gen Thorac Cardiovasc Surg. 2019;67(10):876–9.

    Article  PubMed  Google Scholar 

  12. Lopez Guerra J, Gomez D, Lin S, Levy L, Zhuang Y, Komaki R, et al. Risk factors for local and regional recurrence in patients with resected N0–N1 non-small-cell lung cancer, with implications for patient selection for adjuvant radiation therapy. Ann Oncol: official journal of the European Society for Medical Oncology. 2013;24(1):67–74.

    Article  CAS  Google Scholar 

  13. Butnor K, Cooper K. Visceral pleural invasion in lung cancer: recognizing histologic parameters that impact staging and prognosis. Adv Anat Pathol. 2005;12(1):1–6.

    Article  PubMed  Google Scholar 

  14. Rami-Porta R, Bolejack V, Crowley J, Ball D, Kim J, Lyons G, et al. The IASLC lung cancer staging project: proposals for the revisions of the T descriptors in the forthcoming eighth edition of the TNM classification for lung cancer. J Thorac Oncol. 2015;10(7):990–1003.

    Article  PubMed  Google Scholar 

  15. Zhang T, Zhang JT, Li WF, Lin JT, Liu SY, Yan HH, et al. Visceral pleural invasion in T1 tumors (</=3 cm), particularly T1a, in the eighth tumor-node-metastasis classification system for non-small cell lung cancer: a population-based study. J Thorac Dis. 2019;11(7):2754–62.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Muraoka M, Akamine S, Oka T, Tagawa T, Nakamura A, Tsuchiya T, et al. Sentinel node sampling limits lymphadenectomy in stage I non-small cell lung cancer. Eur J Cardiothorac Surg. 2007;32(2):356–61.

    Article  PubMed  Google Scholar 

  17. Kim H, Goo JM, Kim YT, Park CM. CT-defined visceral pleural invasion in T1 lung adenocarcinoma: lack of relationship to disease-free survival. Radiology. 2019;292(3):741–9.

    Article  PubMed  Google Scholar 

  18. Farsad M. FDG PET/CT in the staging of lung cancer. Curr Radiopharm. 2020;13(3):195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang L, Li T, Hong J, Zhang M, Ouyang M, Zheng X, et al. (18)F-FDG PET-based radiomics model for predicting occult lymph node metastasis in clinical N0 solid lung adenocarcinoma. Quant Imaging Med Surg. 2021;11(1):215–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han Y, Ma Y, Wu Z, Zhang F, Zheng D, Liu X, et al. Histologic subtype classification of non-small cell lung cancer using PET/CT images. Eur J Nucl Med Mol Imaging. 2021;48(2):350–60.

    Article  PubMed  Google Scholar 

  21. Tanaka T, Shinya T, Sato S, Mitsuhashi T, Ichimura K, Soh J, et al. Predicting pleural invasion using HRCT and 18F-FDG PET/CT in lung adenocarcinoma with pleural contact. Ann Nucl Med. 2015;29(9):757–65.

    Article  PubMed  Google Scholar 

  22. Mayerhoefer ME, Materka A, Langs G, Haggstrom I, Szczypinski P, Gibbs P, et al. Introduction to Radiomics. J Nucl Med. 2020;61(4):488–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yip SS, Aerts HJ. Applications and limitations of radiomics. Phys Med Biol. 2016;61(13):R150–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ji G, Zhu F, Zhang Y, Liu X, Wu F, Wang K, et al. A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma. Eur Radiol. 2019;29(7):3725–35.

    Article  PubMed  Google Scholar 

  25. Tan Y, Zhang S, Wei J, Dong D, Wang X, Yang G, et al. A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery. Eur Radiol. 2019;29(7):3325–37.

    Article  PubMed  Google Scholar 

  26. Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a nomogram for cancer prognosis. J Clin Oncol. 2008;26(8):1364–70.

    Article  PubMed  Google Scholar 

  27. Chen Z, Jiang S, Li Z, Rao L, Zhang X. Clinical value of (18)F-FDG PET/CT in prediction of visceral pleural invasion of subsolid nodule stage I lung adenocarcinoma. Acad Radiol. 2020;27(12):1691–9.

    Article  PubMed  Google Scholar 

  28. Shimizu K, Yoshida J, Nagai K, Nishimura M, Ishii G, Morishita Y, et al. Visceral pleural invasion is an invasive and aggressive indicator of non-small cell lung cancer. J Thorac Cardiovasc Surg. 2005;130(1):160–5.

    Article  PubMed  Google Scholar 

  29. Kawase A, Yoshida J, Miyaoka E, Asamura H, Fujii Y, Nakanishi Y, et al. Visceral pleural invasion classification in non-small-cell lung cancer in the 7th edition of the tumor, node, metastasis classification for lung cancer: validation analysis based on a large-scale nationwide database. J Thorac Oncol. 2013;8(5):606–11.

    Article  PubMed  Google Scholar 

  30. Takizawa H, Kondo K, Kawakita N, Tsuboi M, Toba H, Kajiura K, et al. Autofluorescence for the diagnosis of visceral pleural invasion in non-small-cell lung cancer. Eur J Cardiothorac Surg. 2018;53(5):987–92.

    Article  PubMed  Google Scholar 

  31. Zhong C, Fang W, Mao T, Yao F, Chen W, Hu D. Comparison of thoracoscopic segmentectomy and thoracoscopic lobectomy for small-sized stage IA lung cancer. Ann Thorac Surg. 2012;94(2):362–7.

    Article  PubMed  Google Scholar 

  32. Snoeckx A. Visceral pleural invasion: predictable on CT? Quant Imaging Med Surg. 2019;9(12):2019–22.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhao Q, Wang JW, Yang L, Xue LY, Lu WW. CT diagnosis of pleural and stromal invasion in malignant subpleural pure ground-glass nodules: an exploratory study. Eur Radiol. 2019;29(1):279–86.

    Article  PubMed  Google Scholar 

  34. Rami-Porta R, Asamura H, Travis WD, Rusch VW. Lung cancer - major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(2):138–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kezheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, N., Li, J., Jiang, Z. et al. Development and validation of 18F-FDG PET/CT radiomics-based nomogram to predict visceral pleural invasion in solid lung adenocarcinoma. Ann Nucl Med 37, 605–617 (2023). https://doi.org/10.1007/s12149-023-01861-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-023-01861-w

Keywords

Navigation