Skip to main content
Log in

99mTc-PSMA targeted robot-assisted radioguided surgery during radical prostatectomy and extended lymph node dissection of prostate cancer patients

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

The feasibility of tracer production of 99mtechnetium (Tc)-prostate-specific membrane antigen (PSMA)—I&S sterile cold kit, imaging with single photon emission tomography/computed tomography (SPECT/CT), and 99mTc-PSMA-radioguided robot-assisted laparoscopic radical prostatectomy (99mTc-PSMA-RG-RALRP) technique for lymph node (LN) dissection of primary prostate cancer (PCa) patients were evaluated prospectively.

Methods

Fifteen primary PCa patients with intermediate- or high-risk score according to D’Amico risk stratification who had PSMA receptor affinity with Ga-68 PSMA-11 PET/CT were enrolled. After 99mTc-PSMA-I&S injection and SPECT/CT imaging, 99mTc-PSMA-RG-RALRP with DaVinci XI robotic platform and laparoscopic gamma probe were performed. Radioactive rating of resected tissue was compared with post-operative histopathology. Physiological and pathological uptakes of organs and tissues for both imaging modalities were compared.

Results

Physiological radiotracer distribution was similar for both imaging modalities. PCa lesions were much more visible on PET/CT. Metastatic LNs could not be visualized with SPECT/CT. Eighteen of 297 totally dissected LNs were metastatic, which were exactly the same with per-operative probe counts with sensitivity, specificity, accuracy, and negative and positive predictive value of all 100%. The median follow-up was 23.5 ± 4.6 months. tPSA reduction was > 98%. The 2.5 years biochemical recurrence-free survival, PCa-specific treatment-free survival and overall survival rates were 86,7%, 66,7% and 100%, respectively.

Conclusion

Tc-99 m-PSMA-RG-RALRP is a promising technique for extended pelvic lymph node dissection (ePLND) during robotic surgery, which may shorten the operation time and reduce complication risks. If LN metastases is detected during surgery with PSMA-targeted probe, it may be an early indicator of PCa-spesific treatment planning. Tc-99 m-PSMA-I&S SPECT/CT is not as successful as Ga-68 PSMA-11 PET/CT for diagnosis of primary PCA lesions or LN metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Article  PubMed  Google Scholar 

  2. Lawal IO, Ankrah AO, Mokgoro NP, Vorster M, Maes A, Sathekge MM. Diagnostic sensitivity of Tc-99m HYNIC PSMA SPECT/CT in prostate carcinoma: a comparative analysis with Ga-68 PSMA PET/CT. Prostate. 2017;77:1205–12.

    Article  CAS  PubMed  Google Scholar 

  3. Schreiter V, Reimann C, Geisel D, Schreiter NF. Nuclear Medicine Imaging of Prostate Cancer. Rofo. 2016;188:1037–44.

    Article  CAS  PubMed  Google Scholar 

  4. Yilmaz B, Turkay R, Colakoglu Y, Baytekin HF, Ergul N, Sahin S, et al. Comparison of preoperative locoregional Ga-68 PSMA-11 PET-CT and mp-MRI results with postoperative histopathology of prostate cancer. Prostate. 2019;79:1007–17.

    Article  CAS  PubMed  Google Scholar 

  5. Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2021;79:243–62.

    Article  CAS  PubMed  Google Scholar 

  6. Maurer T, Gschwend JE, Rauscher I, Souvatzoglou M, Haller B, Weirich G, et al. Diagnostic efficacy of (68)Gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol. 2016;195:1436–43.

    Article  PubMed  Google Scholar 

  7. García-Pérez FO, Davanzo J, López-Buenrostro S, Santos-Cuevas C, Ferro-Flores G, Jímenez-Ríos MA, et al. Head to head comparison performance of 99mTc-EDDA/HYNIC-iPSMA SPECT/CT and 68Ga-PSMA-11 PET/CT a prospective study in biochemical recurrence prostate cancer patients. Am J Nucl Med Mol Imaging. 2018;20:332–40.

    Google Scholar 

  8. Maurer T, Weirich G, Schottelius M, Weineisen M, Frisch B, Okur A, et al. Prostate-specific membrane antigen-radioguided surgery for metastatic lymph nodes in prostate cancer. Eur Urol. 2015;68:530–4.

    Article  PubMed  Google Scholar 

  9. Rauscher I, Maurer T, Souvatzoglou M, Beer AJ, Vag T, Wirtz M, et al. Intrapatient comparison of 111In-PSMA I&T SPECT/CT and hybrid 68Ga-HBED-CC PSMA PET in patients with early recurrent prostate cancer. Clin Nucl Med. 2016;41:397–402.

    Article  Google Scholar 

  10. Robu S, Schottelius M, Eiber M, Maurer T, Gschwend J, Schwaiger M, et al. Preclinical evaluation and first patient application of 99mTc-PSMA-I&S for SPECT imaging and radioguided surgery in prostate cancer. J Nucl Med. 2017;58:235–42.

    Article  CAS  PubMed  Google Scholar 

  11. Schottelius M, Wirtz M, Eiber M, Maurer T, Wester HJ. [111In]PSMA-I&T:expanding the spectrum of PSMA-I&T applications towards SPECT and radioguidedsurgery. EJNMMI Res. 2015;5:68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Maurer T, Robu S, Schottelius M, Schwamborn K, Rauscher I, van den Berg NS, et al. (99m)technetium-based prostate-specific membrane antigen-radioguided surgery in recurrent prostate cancer. Eur Urol. 2019;75:659–66.

    Article  PubMed  Google Scholar 

  13. Su HC, Zhu Y, Hu SL, Liu C, Lin GW, Dai B, et al. The value of (99m) Tc-PSMA SPECT/CT-guided surgery for identifying and locating lymph node metastasis in prostate cancer patients. Ann Surg Oncol. 2019;26:653–9.

    Article  PubMed  Google Scholar 

  14. Bastide C, Brenot-Rossi I, Garcia S, Rossi D. Radioisotope guided sentinel lymph node dissection in patients with localized prostate cancer: results of the first 100 cases. Eur J Surg Oncol. 2009;35:751–6.

    Article  CAS  PubMed  Google Scholar 

  15. Seisen T, Vetterlein MW, Karabon P, Jindal T, Sood A, Nocera L, et al. Efficacy of local treatment in prostate cancer patients with clinically pelvic lymph node-positive disease at initial diagnosis. Eur Urol. 2018;73:452–61.

    Article  PubMed  Google Scholar 

  16. van Leeuwen FWB, Winter A, van Der Poel HG, Eiber M, Suardi N, Graefen M, Wawroschek F, et al. Technologies for image-guided surgery for managing lymphatic metastases in prostate cancer. Nat Rev Urol. 2019;16:159–71.

    Article  PubMed  Google Scholar 

  17. Jilg CA, Reichel K, Stoykow C, Rischke HC, Bartholomä M, Drendel V, et al. Results from extended lymphadenectomies with [111In]PSMA-617 for intraoperative detection of PSMA-PET/CT-positive nodal metastatic prostate cancer. EJNMMI Res. 2020;6(10):17.

    Article  CAS  Google Scholar 

  18. Abdollah F, Gandaglia G, Suardi N, Capitanio U, Salonia A, Nini A, et al. More extensive pelvic lymph node dissection improves survival in patients with node-positive prostate cancer. Eur Urol. 2015;67:212–9.

    Article  PubMed  Google Scholar 

  19. Choo MS, Kim M, Ku JH, Kwak C, Kim HH, Jeong CW. Extended versus standard pelvic lymph node dissection in radical prostatectomy on oncological and functional outcomes: a systematic review and meta-analysis. Ann Surg Oncol. 2017;24:2047–54.

    Article  PubMed  Google Scholar 

  20. Grivas N, Wit EMK, Kuusk T, KleinJan GH, Donswijk ML, van Leeuwen FWB, et al. The impact of adding sentinel node biopsy to extended pelvic lymph node dissection on biochemical recurrence in prostate cancer patients treated with robot-assisted radical prostatectomy. J Nucl Med. 2018;59:204–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kimura S, Abufaraj M, Janisch F, Iwata T, Parizi MK, Foerster B, et al. Performance of [68Ga] Ga-PSMA 11 PET for detecting prostate cancer in the lymph nodes before salvage lymph node dissection: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2020;23:1–10.

    Article  PubMed  Google Scholar 

  22. Jilg CA, Drendel V, Rischke HC, Beck T, Vach W, Schaal K, et al. Diagnostic accuracy of Ga-68-HBED-CC-PSMA-ligand-PET/CT before salvage lymph node dissection for recurrent prostate cancer. Theranostics. 2017;7:1770–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wawroschek F, Vogt H, Weckermann D, Wagner T, Hamm M, Harzmann R. Radioisotope guided pelvic lymph node dissection for prostate cancer. J Urol. 2001;166:1715–9.

    Article  CAS  PubMed  Google Scholar 

  24. Meershoek P, van Oosterom MN, Simon H, Mengus L, Maurer T, van Leeuwen PJ, et al. Robot-assisted laparoscopic surgery using DROP-IN radioguidance: first-in-human translation. Eur J Nucl Med Mol Imaging. 2019;46:49–53.

    Article  CAS  PubMed  Google Scholar 

  25. van Oosterom MN, Simon H, Mengus L, Welling MM, van der Poel HG, van den Berg NS, et al. Revolutionizing (robot-assisted) laparoscopic gamma tracing using a drop-in gamma probe technology. Am J Nucl Med Mol Imaging. 2016;6:1–17.

    PubMed  PubMed Central  Google Scholar 

  26. Dell’Oglio P, Meershoek P, Maurer T, Wit EMK, van Leeuwen PJ, van der Poel HG, et al. A DROP-IN gamma probe for robot-assisted radioguided surgery of lymph nodes during radical prostatectomy. Eur Urol. 2021;79:124–32.

    Article  CAS  PubMed  Google Scholar 

  27. Collamati F, Van Oosterom MN, De Simoni M, Faccini R, Fischetti M, Mancini Terracciano C, et al. A DROP-IN beta probe for robot-assisted 68Ga-PSMA radioguided surgery: first ex vivo technology evaluation using prostate cancer specimens. EJNMMI Res. 2020;6(10):92.

    Article  CAS  Google Scholar 

  28. Hensbergen AW, van Willigen DM, van Beurden F, van Leeuwen PJ, Buckle T, Schottelius M, et al. Image-guided surgery: are we getting the most out of small-molecule prostate-specific-membrane-antigen-targeted tracers? Bioconjug Chem. 2020;19(31):375–95.

    Article  CAS  Google Scholar 

  29. Pomykala KL, Czernin J, Grogan TR, Armstrong WR, Williams J, Calais J. Total-body 68Ga-PSMA-11 PET/CT for bone metastasis detection in prostate cancer patients: potential impact on bone scan guidelines. J Nucl Med. 2020;61:405–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mottaghy FM, Heinzel A, Verburg FA. Molecular imaging using PSMA PET/CT versus multiparametric MRI for initial staging of prostate cancer: comparing apples with oranges? Eur J Nucl Med Mol Imaging. 2016;43:1397–9.

    Article  PubMed  Google Scholar 

  31. Tugcu V, Simsek A, Yigitbasi I, Yenice MG, Sahin S, Tasci AI. Robotic perineal radical prostatectomy with high prostate volume. Arch Ital Urol Androl. 2018;31(90):65–7.

    Article  Google Scholar 

  32. Wawroschek F, Vogt H, Wengenmair H, Weckermann D, Hamm M, Keil M, et al. Prostate lymphoscintigraphy and radio-guided surgery for sentinel lymph node identification in prostate cancer. Technique and results of the first 350 cases. Urol Int. 2003;70:303–10.

    Article  PubMed  Google Scholar 

  33. Heidenreich A, Varga Z, Von Knobloch R. Extended pelvic lymphadenectomy in patients undergoing radical prostatectomy: high incidence of lymph node metastasis. J Urol. 2002;167:1681–6.

    Article  PubMed  Google Scholar 

  34. Schumacher MC, Burkhard FC, Thalmann GN, Fleischmann A, Studer UE. Is pelvic lymph node dissection necessary in patients with a serum PSA <10 ng/ml undergoing radical prostatectomy for prostate cancer? Eur Urol. 2006;50:272–9.

    Article  PubMed  Google Scholar 

  35. Briganti A, Chun FK, Salonia A, Suardi N, Gallina A, Da Pozzo LF, et al. Complications and other surgical outcomes associated with extended pelvic lymphadenectomy in men with localized prostate cancer. Eur Urol. 2006;50:1006–13.

    Article  PubMed  Google Scholar 

  36. Weckermann D, Dorn R, Holl G, Wagner T, Harzmann R. Limitations of radioguided surgery in high-risk prostate cancer. Eur Urol. 2007;51:1549–56.

    Article  PubMed  Google Scholar 

  37. Joniau S, Van den Bergh L, Lerut E, Deroose CM, Haustermans K, Oyen R, et al. Mapping of pelvic lymph node metastases in prostate cancer. Eur Urol. 2013;63:450–8.

    Article  PubMed  Google Scholar 

  38. Mattei A, Fuechsel FG, Bhatta Dhar N, Warncke SH, Thalmann GN, Krause T, et al. The template of the primary lymphatic landing sites of the prostate should be revisited: results of a multimodality mapping study. Eur Urol. 2008;53:118–25.

    Article  PubMed  Google Scholar 

  39. Wawroschek F, Wagner T, Hamm M, Weckermann D, Vogt H, Märkl B, et al. The influence of serial sections, immunohistochemistry, and extension of pelvic lymph node dissection on the lymph node status in clinically localized prostate cancer. Eur Urol. 2003;43:132–6.

    Article  PubMed  Google Scholar 

  40. Maurer T, Graefen M, van der Poel H, Hamdy F, Briganti A, Eiber M, et al. Prostate-specific membrane antigen-guided surgery. J Nucl Med. 2020;61:6–12.

    Article  PubMed  Google Scholar 

  41. Rauscher I, Kronke M, Konig M, Gafita A, Maurer T, Horn T, et al. Matchedpair comparison of (68)Ga-PSMA-11 PET/CT and (18)F-PSMA-1007 PET/ CT: frequency of pitfalls and detection efficacy in biochemical recurrence after radical prostatectomy. J Nucl Med. 2020;61:51–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hacker A, Jeschke S, Leeb K, Prammer K, Ziegerhofer J, Sega W, et al. Detection of pelvic lymph node metastases in patients with clinically localized prostate cancer: comparison of [18F]fluorocholine positron emission tomography-computerized tomography and laparoscopic radioisotope guided sentinel lymph node dissection. J Urol. 2006;176:2014–8.

    Article  PubMed  Google Scholar 

  43. van den Berg NS, Valdes-Olmos RA, van der Poel HG, van Leeuwen FW. Sentinel lymph node biopsy for prostate cancer: a hybrid approach. J Nucl Med. 2013;54:493–6.

    Article  PubMed  Google Scholar 

  44. Weckermann D, Dorn R, Trefz M, Wagner T, Wawroschek F, Harzmann R. Sentinel lymph node dissection for prostate cancer:experience with more than 1000 patients. J Urol. 2007;177:916–20.

    Article  PubMed  Google Scholar 

  45. Maurer T, van Leeuwen FWB, Schottelius M, Wester HJ, Eiber M. Entering the era of molecular-targeted precision surgery in recurrent prostate cancer. J Nucl Med. 2018;20:jnumed118.221861.

    Google Scholar 

  46. Maurer T, Gschwend JE, Eiber M. Prostate-specific membrane antigen-guided salvage lymph node dissection in recurrent prostate cancer: a novel technology to detect lymph node metastases. Curr Opin Urol. 2018;28:191–6.

    Article  PubMed  Google Scholar 

  47. Mix M, Reichel K, Stoykow C, Bartholomä M, Drendel V, Gourni E, et al. Performance of 111In-labelled PSMA ligand in patients with nodal metastatic prostate cancer: correlation between tracer uptake and histopathology from lymphadenectomy. Eur J Nucl Med Mol Imaging. 2018;45:2062–70.

    Article  CAS  PubMed  Google Scholar 

  48. KleinJan GH, van den Berg NS, Brouwer OR, de Jong J, Acar C, Wit EM, et al. Optimisation of fluorescence guidance during robot-assisted laparoscopic sentinel node biopsy for prostate cancer. Eur Urol. 2014;66:991–8.

    Article  PubMed  Google Scholar 

  49. Meinhardt W, Valdes Olmos RA, van der Poel HG, Bex A, Horenblas S. Laparoscopic sentinel node dissection for prostate carcinoma: technical and anatomical observations. BJU Int. 2008;102:714–7.

    Article  PubMed  Google Scholar 

  50. Pijpers R, Buist MR, van Lingen A, Dijkstra J, van Diest PJ, Teule GJ, et al. The sentinel node in cervical cancer: scintigraphy and laparoscopic gamma probe-guided biopsy. Eur J Nucl Med Mol Imaging. 2004;31:1479–86.

    Article  PubMed  Google Scholar 

  51. Beri A, Janetschek G. Technology insight: radioguided sentinel lymph node dissection in the staging of prostate cancer. Nat Clin Pract Urol. 2006;3:602–10.

    Article  PubMed  Google Scholar 

  52. van Leeuwen FWB, van Oosterom MN, Meershoek P, van Leeuwen PJ, Berliner C, van der Poel HG, et al. Minimal-invasive robot-assisted image-guided resection of prostate-specific membrane antigen-positive lymph nodes in recurrent prostate cancer. Clin Nucl Med. 2019;44:580–1.

    Article  PubMed  Google Scholar 

  53. Hanks GE. External-beam radiation therapy for clinically localized prostate cancer: patterns of care studies in the United States. NCI Monogr. 1988:75–84

  54. Aus G, Nordenskjöld K, Robinson D, Rosell J, Varenhorst E. Prognostic factors and survival in node-positive (N1) prostate cancer-a prospective study based on data from a Swedish population-based cohort. Eur Urol. 2003;43:627–31.

    Article  PubMed  Google Scholar 

  55. Daneshmand S, Quek ML, Stein JP, Lieskovsky G, Cai J, Pinski J, et al. Prognosis of patients with lymph node positive prostate cancer following radical prostatectomy: long-term results. J Urol. 2004;172:2252–5.

    Article  PubMed  Google Scholar 

  56. Abdollah F, Karnes RJ, Suardi N, Cozzarini C, Gandaglia G, Fossati N, et al. Impact of adjuvant radiotherapy on survival of patients with node-positive prostate cancer. J Clin Oncol. 2014;32:3939–47.

    Article  PubMed  Google Scholar 

  57. Mandel P, Rosenbaum C, Pompe RS, Steuber T, Salomon G, Chun FK, et al. Long-term oncological outcomes in patients with limited nodal disease undergoing radical prostatectomy and pelvic lymph node dissection without adjuvant treatment. World J Urol. 2017;35:1833–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Health Sciences University Turkey, Scientific Research Project (2018/076). We would like to thank medical physicist Özlem EREZ for her contribution to the preparation of Tc-99m-PSMA-I&S.

Funding

Health Sciences University Turkey, Scientific Research Project (2018 / 076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burçak Yılmaz.

Ethics declarations

Conflicts of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, B., Şahin, S., Ergül, N. et al. 99mTc-PSMA targeted robot-assisted radioguided surgery during radical prostatectomy and extended lymph node dissection of prostate cancer patients. Ann Nucl Med 36, 597–609 (2022). https://doi.org/10.1007/s12149-022-01741-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-022-01741-9

Keywords

Navigation