Skip to main content

Advertisement

Log in

Potential of three-step pretargeting radioimmunotherapy using biotinylated bevacizumab and succinylated streptavidin in triple-negative breast cancer xenograft

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Pretargeting radioimmunotherapy (PRIT) is a promising approach that can reduce long-time retention of blood radioactivity and consequently reduce hematotoxicity. Among the PRIT strategies, the combination of biotin-conjugated mAb and radiolabeled streptavidin (StAv) is a simple and convenient method because of its ease of preparation. This study performed three-step (3-step) PRIT using the sequential injection of (1) biotinylated bevacizumab (Bt-BV), (2) avidin, and (3) radiolabeled StAv for the treatment of triple-negative breast cancer (TNBC).

Methods

Four biodistribution studies were performed using 111In in tumor-bearing mice to optimize each step of our PRIT methods. Further, a therapeutic study was performed with optimized 3-step PRIT using 90Y-labeled StAv.

Results

Based on the biodistribution studies, the protein dose of Bt-BV and avidin was optimized to 100 μg and 10 molar equivalent of BV, respectively. Succinylation of StAv significantly decreased the kidney accumulation level (with succinylation (6.96 ± 0.91) vs without succinylation (20.60 ± 1.47) at 1 h after injection, p < 0.0001) with little effect on the tumor accumulation level. In the therapeutic study, tumor growth was significantly suppressed in treatment groups with optimized 3-step PRIT using 90Y-labeled succinylated StAv compared to that of the no-treatment group (p < 0.05).

Conclusions

The 3-step PRIT strategy of this study achieved fast blood clearance and low kidney uptake with little effect on the tumor accumulation level, and a certain degree of therapeutic effect was consequently observed. These results indicated that the pretargeting treatment of the current study may be effective for human TNBC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hernandez MC, Knox SJ. Radiobiology of radioimmunotherapy: targeting CD20 B-cell antigen in non-Hodgkin’s lymphoma. Int J Radiat Oncol. 2004;59:1274–87.

    Article  CAS  Google Scholar 

  2. Read ED, Eu P, Little PJ, Piva TJ. The status of radioimmunotherapy in CD20+ non-Hodgkin’s lymphoma. Target Oncol. 2015;10:15–26.

    Article  Google Scholar 

  3. Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017;6:576–88.

    Article  CAS  Google Scholar 

  4. Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol. 2007;34:757–78.

    Article  CAS  Google Scholar 

  5. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23:1126–36.

    Article  CAS  Google Scholar 

  6. Larson SM, Carrasquillo JA, Cheung NKV, Press OW. Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015;15:347–60.

    Article  CAS  Google Scholar 

  7. Jain M, Venkatraman G, Batra SK. Optimization of radioimmunotherapy of solid tumors: biological impediments and their modulation. Clin Cancer Res. 2007;13:1374–82.

    Article  CAS  Google Scholar 

  8. Park SI, Shenoi J, Frayo SM, Hamlin DK, Lin Y, Wilbur DS, et al. Pretargeted radioimmunotherapy using genetically engineered antibody-streptavidin fusion proteins for treatment of non-Hodgkin lymphoma. Clin Cancer Res. 2011;17:7373–82.

    Article  CAS  Google Scholar 

  9. Goodwin D, Meares C, Diamanti C, McCall M, Lai C, Torti F, et al. Use of specific antibody for rapid clearance of circulating blood background from radiolabeled tumor imaging proteins. Eur J Nucl Med. 1984;9:209–15.

    Article  CAS  Google Scholar 

  10. Group NP. Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nature Med. 2001;8:987–9.

    Google Scholar 

  11. Gerber HP, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 2005;65:671–80.

    CAS  PubMed  Google Scholar 

  12. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013;13:871–82.

    Article  CAS  Google Scholar 

  13. Nagengast WB, De Vries EG, Hospers GA, Mulder NH, de Jong JR, Hollema H, et al. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med. 2007;48:1313–9.

    Article  CAS  Google Scholar 

  14. Gaykema SBM, Brouwers AH, Lub-de Hooge MN, Pleijhuis RG, Timmer-Bosscha H, Pot L, et al. 89Zr-bevacizumab PET imaging in primary breast cancer. J Nucl Med. 2013;54:1014–8.

    Article  CAS  Google Scholar 

  15. Lin YS, Nguyen C, Mendoza JL, Escandon E, Fei D, Meng YG, et al. Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J Pharmacol Exp Ther. 1999;288:371–8.

    CAS  PubMed  Google Scholar 

  16. Gordon MS, Margolin K, Talpaz M, Sledge GW Jr, Holmgren E, Benjamin R, et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol. 2001;19:843–50.

    Article  CAS  Google Scholar 

  17. Lindegren S, Karlsson B, Jacobsson L, Andersson H, Hultborn R, Skarnemark G. 211At-labeled and biotinylated effector molecules for pretargeted radioimmunotherapy using poly-L-and poly-D-lysine as multicarriers. Clin Cancer Res. 2003;9:3873s-s3879.

    CAS  PubMed  Google Scholar 

  18. Wilbur DS, Hamlin DK, Meyer DL, Mallett RW, Quinn J, Vessella RL, et al. Streptavidin in antibody pretargeting. 3. Comparison of biotin binding and tissue localization of 1,2-cyclohexanedione and succinic anhydride modified recombinant streptavidin. Bioconjug Chem. 2002;13:611–20.

    Article  CAS  Google Scholar 

  19. Tolaney SM, Boucher Y, Duda DG, Martin JD, Seano G, Ancukiewicz M, et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci U S A. 2015;112:14325–30.

    Article  CAS  Google Scholar 

  20. Jerusalem G, Lousberg L, Schroeder H, Collignon J. Triplenegative breast cancer: treatment challenges and solutions. Breast Cancer Targets Ther. 2016;8:93–107.

    Article  Google Scholar 

  21. Yudistiro R, Hanaoka H, Katsumata N, Yamaguchi A, Tsushima Y. Bevacizumab Radioimmunotherapy (RIT) with accelerated blood clearance using the avidin chase. Mol Pharm. 2018;15:2165–73.

    Article  CAS  Google Scholar 

  22. Sakahara H, Endo K, Nakashima T, Koizumi M, Ohta H, Torizuka K, et al. Effect of DTPA conjugation on the antigen binding activity and biodistribution of monoclonal antibodies against alpha-Fetoprotein. J Nucl Med. 1985;26:750–5.

    CAS  PubMed  Google Scholar 

  23. Schechter B, Arnon R, Colas C, Burakova T, Wilchek M. Renal accumulation of streptavidin: Potential use for targeted therapy to the kidney. Kidney Int. 1995;47:1327–35.

    Article  CAS  Google Scholar 

  24. Schechter B, Silberman R, Arnon R, Wilchek M. Tissue distribution of avidin and streptavidin injected to mice: Effect of avidin carbohydrate, streptavidin truncation and exogenous biotin. Eur J Biochem. 1990;189:327–31.

    Article  CAS  Google Scholar 

  25. Tsai SW, Li L, Williams LE, Anderson AL, Raubitschek AA, Shively JE. Metabolism and renal clearance of 111In-labeled DOTA-conjugated antibody fragments. Bioconjug Chem. 2001;12:264–70.

    Article  CAS  Google Scholar 

  26. Vegt E, Melis M, Eek A, de Visser M, Borm M, Oyen WJG, et al. Renal uptake of different radiolabelled peptides is mediated by megalin: SPECT and biodistribution studies in megalin-deficient mice. Eur J Nucl Med Mol Imaging. 2011;38:623–32.

    Article  CAS  Google Scholar 

  27. Wilbur DS, Hamlin DK, Buhler KR, Pathare PM, Vessella RL, Stayton PS, et al. Streptavidin in antibody pretargeting 2 Evaluation of methods for decreasing localization of streptavidin to kidney while retaining its tumor binding capacity. Bioconjug Chem. 1998;9:322–30.

    Article  CAS  Google Scholar 

  28. Förster GJ, Santos EB, Smith-Jones PM, Zanzonico P, Larson SM. Pretargeted radioimmunotherapy with a single-chain antibody/streptavidin construct and radiolabeled DOTA-biotin: Strategies for reduction of the renal dose. J Nucl Med. 2006;47:140–9.

    PubMed  Google Scholar 

  29. Cremonesi M, Ferrari M, Grana CM, Vanazzi A, StabinM, Bartolomei M, et al. High-dose radioimmunotherapy with 90Y-ibritumomab tiuxetan: comparative dosimetric study for tailored treatment. J Nucl Med. 2007;48:1871−9.

  30. Baxter LT, Zhu H, Mackensen DG, Butler WF, Jain RK. Biodistribution of monoclonal antibodies: scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res. 1995;55:4611–22.

    CAS  PubMed  Google Scholar 

  31. Oriuchi N, Watanabe N, Kanda H, Hashimoto M, Sugiyama S, Takenoshita S, et al. Antibody-dependent difference in biodistribution of monoclonal antibodies in animal models and humans. Cancer Immunol Immunother. 1998;46:311–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors have no conflicts of interest to declare. This work was supported by a JSPS KAKENHI grant (No. 16K10269).

Funding

This work was supported by a JSPS KAKENHI grant (No. 16K10269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Hanaoka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 41 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, W., Yudistiro, R., Hanaoka, H. et al. Potential of three-step pretargeting radioimmunotherapy using biotinylated bevacizumab and succinylated streptavidin in triple-negative breast cancer xenograft. Ann Nucl Med 35, 514–522 (2021). https://doi.org/10.1007/s12149-021-01597-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-021-01597-5

Keywords

Navigation