Skip to main content
Log in

A versatile and compact reference gas generator for calibration of ion mobility spectrometers

  • Technical Report
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

We developed a versatile and compact reference gas generator for the calibration of ion mobility spectrometers or other gas detection technologies. The principle is based on the use of permeation tubes or diffusion vessels. This approach allows the reference gas to be generated with very low concentrations of analytes. In contrast to most of the commercially available instruments, which dilute the complete permeation gas stream, we only used an aliquot for further dilution and the necessary quantity of inert gas can be considerably reduced. The permeation cell can be operated at elevated or reduced temperatures relative to ambient temperature. This temperature control allows the permeation rate to be adjusted depending on the volatility of the investigated substance and the membrane material used in the permeation tubes. As all connection lines and the mixing chamber after the permeation chamber are held at 70 °C, memory effects can be minimized. As a result, stable permeation rates can be rapidly achieved and the regeneration period after removing the substances from the permeation vessel significantly reduced. In this study, the analytical performance of the reference gas generator was validated using DMMP due to its importance for ion mobility measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Koziel JA, Martos PA, Pawliszyn J (2004) System for the generation of standard gas mixtures of volatile and semi-volatile organic compounds for calibrations of solid-phase microextraction and other sampling devices. J Chrom A 1025(1):3–9. https://doi.org/10.1016/j.chroma.2003.10.079

    Article  CAS  Google Scholar 

  2. Montero-Montoya R, Lopez-Vargas R, Arellano-Aguilar O (2018) Volatile organic compounds in air: sources, distribution, exposure and associated illnesses in children. Ann Glob Health 84(2):225–238. https://doi.org/10.29024/aogh.910

    Article  PubMed  PubMed Central  Google Scholar 

  3. Grate JW, Ewing RG, Atkinson DA (2012) Vapor-generation methods for explosives-detection research. TrAC Trends Anal Chem 41:1–14. https://doi.org/10.1016/j.trac.2012.08.007

    Article  CAS  Google Scholar 

  4. Namiesnik J (1984) Generation of standard gaseous mixtures. J Chrom A 300:79–108. https://doi.org/10.1016/S0021-9673(01)87581-6

    Article  CAS  Google Scholar 

  5. Słomińska M, Konieczka P, Namieśnik J (2014) New developments in preparation and use of standard gas mixtures. TrAC Trends Anal Chem 62:135–143. https://doi.org/10.1016/j.trac.2014.07.013

    Article  CAS  Google Scholar 

  6. Demichelis A, Pascale C, Lecuna M, Niederhauser B, Sassi G, Sassi MP (2018) Compact devices for generation of reference trace VOC mixtures: a new concept in assuring quality at chemical and biochemical laboratories. Anal Bioanal Chem 410(10):2619–2628. https://doi.org/10.1007/s00216-018-0935-8

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, Täffner T, Bischoff M, Niemeyer B (2012) Test gas generation from pure liquids: an application-oriented overview of methods in a nutshell Int J Chem Eng 2012:6 https://doi.org/10.1155/2012/417029, 1, 6

  8. Barratt RS (1981) The preparation of standard gas mixtures. A review. Analyst 106(1265):817–849. https://doi.org/10.1039/AN9810600817

    Article  CAS  Google Scholar 

  9. McKinley J (2008) Permeation tubes: a simple path to very complex gas mixtures gases and instrumentation 1–2, pp 22–25

    Google Scholar 

  10. Susaya J, Kim KH, Cho JW, Parker D (2011) The use of permeation tube device and the development of empirical formula for accurate permeation rate. J Chromatogr A 1218(52):9328–9335. https://doi.org/10.1016/j.chroma.2011.11.007

    Article  CAS  PubMed  Google Scholar 

  11. Ingnieure VD (2015) Messen gasförmiger Verbindungen in der Außenluft - Messen von Innenraumluftverunreinigungen - Gaschromatografische Bestimmung organischer Verbindungen - Herstellungsverfahren von Kalibriergasen und Kalibrierlösungen vol VDI 2100 Blatt 4. Beuth Verlag GmbH, Berlin

  12. Mayer T, Borsdorf H (2014) Accuracy of ion mobility measurements dependent on the influence of humidity. Anal Chem 86:5059–5076

    Article  Google Scholar 

  13. Gunzer F, Baether W, Zimmermann S (2011) Investigation of dimethyl methylphosphonate (DMMP) with an ion mobility spectrometer using a pulsed electron source. Int J Ion Mobil Spectrom 14(2-3):99–107. https://doi.org/10.1007/s12127-011-0065-x

    Article  CAS  Google Scholar 

  14. Borsdorf H, Mayer T, Zarejousheghani M, Eiceman GA (2011) Recent developments in ion mobility spectrometry. Appl Spectrosc Rev 46(6):472–521

    Article  Google Scholar 

  15. Makinen MA, Anttalainen OA, Sillanpaa ME (2010) Ion mobility spectrometry and its applications in detection of chemical warfare agents. Anal Chem 82(23):9594–9600. https://doi.org/10.1021/ac100931n

    Article  CAS  PubMed  Google Scholar 

  16. Borsdorf H, Mayer T (2011) Response of halogenated compounds in ion mobility spectrometry depending on their structural features. Talanta 83(3):815–822

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the TOXI-Triage project (Tools for detection, traceability, triage and individual monitoring of victims) which is funded from the European Union’s Horizon 2020 (H2020) research and innovation program under the Grant Agreement no 653409.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mayer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, T., Cämmerer, M. & Borsdorf, H. A versatile and compact reference gas generator for calibration of ion mobility spectrometers. Int. J. Ion Mobil. Spec. 23, 51–60 (2020). https://doi.org/10.1007/s12127-019-00252-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-019-00252-0

Keywords

Navigation