Skip to main content

Advertisement

Log in

The prognostic value of DAAM2 in lower grade glioma, liver cancer, and breast cancer

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Dishevelled-associated activator of morphogenesis 2 (DAAM2) is a formin protein and has a potential role in the tumor metastasis. The prognostic value of DAAM2 in pan-cancer is investigated in this study.

Methods

TCGA and GTEx database were downloaded to perform bioinformatics analysis and ROC curves. Then we explored protein–protein interaction and GO-KEGG enrichment to figure out the protein pathways associated with DAAM2 and studied DAAM2-related immune infiltration and methylation. Fifteen pairs of BRCA clinical samples were enrolled to determine the expression and distribution of DAAM2 in BRCA sections by immunohistochemistry. Finally, BRCA cells were transfected with siRNA targeting DAAM2 and subsequently subject to cell proliferation, migration, and invasion assays.

Results

DAAM2 was closely related to the diagnosis and clinical characteristics of lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), and breast cancer (BRCA). Survival curve analysis demonstrated DAAM2 served as a potential prognostic indicator of LGG and LIHC (P = 0.0029 and P = 0.025, respectively). DAAM2 was mainly participated in signaling pathways mediating cytoskeleton regulation and tumor development. The correlation of DAAM2 with tumor-infiltrating immune cells (TIICs) and methylation levels was conducive to the prediction of novel biomarkers of pan-carcinoma. DAAM2 was highly expressed in BRCA tissues than that in paracancerous tissues. The proliferation, invasion, and migration of BRCA cells were inhibited by DAAM2 siRNA.

Conclusion

DAAM2 had a specific value in foretelling the prognosis of LGG, LIHC, and BRCA. High expression level of DAAM2 has longer survival rates in LGG and LIHC. The knockdown of DAAM2 retards the proliferation, invasion, and migration of BRCA cells. This study provides a novel sight of DAAM2 into the exploration of a potential biomarker in pan-cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The underlying data supporting the results of our study can be asked from the corresponding author.

Abbreviations

BLCA:

Bladder urothelial carcinoma

BRCA:

Breast invasive carcinoma

CESC:

Cervical squamous cell carcinoma

COAD:

Colon adenocarcinoma

ESCA:

Esophageal carcinoma

GBM:

Glioblastoma multiforme

KICH:

Kidney chromophobe

KIRP:

Kidney renal papillary cell carcinoma

LUAD:

Lung adenocarcinoma

LUSC:

Lung squamous cell carcinoma

PCPG:

Pheochromocytoma and paraganglioma

PRAD:

Prostate adenocarcinoma

READ:

Rectum adenocarcinoma

STAD:

Stomach adenocarcinoma

THCA:

Thyroid carcinoma

UCEC:

Uterine corpus endometrial carcinoma

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708. (PubMed PMID: 35020204).

    Article  PubMed  Google Scholar 

  2. Yahya EB, Alqadhi AM. Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci. 2021;269: 119087. https://doi.org/10.1016/j.lfs.2021.119087. (PubMed PMID: 33476633).

    Article  CAS  PubMed  Google Scholar 

  3. Tascioglu Aliyev A, Panieri E, Stepanic V, Gurer-Orhan H, Saso L. Involvement of NRF2 in breast cancer and possible therapeutical role of polyphenols and melatonin. Molecules. 2021. https://doi.org/10.3390/molecules26071853. (PubMed PMID: 33805996; PubMed Central PMCID: PMCPMC8038098).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer. 2020;1873(1): 188314. https://doi.org/10.1016/j.bbcan.2019.188314. (PubMed PMID: 31682895; PubMed Central PMCID: PMCPMC6981221).

    Article  CAS  PubMed  Google Scholar 

  5. Reuss AM, Groos D, Buchfelder M, Savaskan N. The acidic brain-glycolytic switch in the microenvironment of malignant glioma. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22115518. (PubMed PMID: 34073734; PubMed Central PMCID: PMCPMC8197239).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu B, Fan Y, Song Z, Han B, Meng Y, Cao P, et al. Identification of DRP1 as a prognostic factor correlated with immune infiltration in breast cancer. Int Immunopharmacol. 2020;89(Pt B): 107078. https://doi.org/10.1016/j.intimp.2020.107078. (PubMed PMID: 33049497).

    Article  CAS  PubMed  Google Scholar 

  7. Breitsprecher D, Goode BL. Formins at a glance. J Cell Sci. 2013;126(Pt 1):1–7. https://doi.org/10.1242/jcs.107250. (PubMed PMID: 23516326; PubMed Central PMCID: PMCPMC3603506).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuhn S, Geyer M. Formins as effector proteins of Rho GTPases. Small GTPases. 2014;5: e29513. https://doi.org/10.4161/sgtp.29513. (PubMedPMID:24914801; PubMedCentralPMCID:PMCPMC4111664).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu W, Sato A, Khadka D, Bharti R, Diaz H, Runnels LW, et al. Mechanism of activation of the formin protein Daam1. Proc Natl Acad Sci U S A. 2008;105(1):210–5. https://doi.org/10.1073/pnas.0707277105. (PubMed PMID: 18162551; PubMed Central PMCID: PMCPMC2224188).

    Article  PubMed  Google Scholar 

  10. Rodriguez-Hernandez I, Maiques O, Kohlhammer L, Cantelli G, Perdrix-Rosell A, Monger J, et al. WNT11-FZD7-DAAM1 signalling supports tumour initiating abilities and melanoma amoeboid invasion. Nat Commun. 2020;11(1):5315. https://doi.org/10.1038/s41467-020-18951-2. (PubMed PMID: 33082334; PubMed Central PMCID: PMCPMC7575593).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luo Y, Barrios-Rodiles M, Gupta GD, Zhang YY, Ogunjimi AA, Bashkurov M, et al. Atypical function of a centrosomal module in WNT signalling drives contextual cancer cell motility. Nat Commun. 2019;10(1):2356. https://doi.org/10.1038/s41467-019-10241-w. (PubMed PMID: 31142743; PubMed Central PMCID: PMCPMC6541620).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schneider R, Deutsch K, Hoeprich GJ, Marquez J, Hermle T, Braun DA, et al. DAAM2 variants cause nephrotic syndrome via actin dysregulation. Am J Hum Genet. 2020;107(6):1113–28. https://doi.org/10.1016/j.ajhg.2020.11.008. (PubMed PMID: 33232676; PubMed Central PMCID: PMCPMC7820625).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER20 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509–14. https://doi.org/10.1093/nar/gkaa407. (PubMed PMID: 32442275; PubMed Central PMCID: PMCPMC7319575).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–102. https://doi.org/10.1093/nar/gkx247. (PubMed PMID: 28407145; PubMed Central PMCID: PMCPMC5570223).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13. https://doi.org/10.1093/nar/gky1131. (PubMed PMID: 30476243; PubMed Central PMCID: PMCPMC6323986).

    Article  CAS  PubMed  Google Scholar 

  16. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4(5):P3 (PubMed PMID: 12734009).

    Article  PubMed  Google Scholar 

  17. Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics. 2019;35(20):4200–2. https://doi.org/10.1093/bioinformatics/btz210. (PubMed PMID: 30903160).

    Article  CAS  PubMed  Google Scholar 

  18. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77(21):e108–10. https://doi.org/10.1158/0008-5472.CAN-17-0307. (PubMedPMID: 29092952; PubMedCentralPMCID: PMCPMC6042652).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Modhukur V, Iljasenko T, Metsalu T, Lokk K, Laisk-Podar T, Vilo J. MethSurv: a web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics. 2018;10(3):277–88. https://doi.org/10.2217/epi-2017-0118. (PubMed PMID: 29264942).

    Article  CAS  PubMed  Google Scholar 

  20. Konno R, Yamakawa H, Utsunomiya H, Ito K, Sato S, Yajima A. Expression of survivin and Bcl-2 in the normal human endometrium. Mol Hum Reprod. 2000;6(6):529–34. https://doi.org/10.1093/molehr/6.6.529. (PubMed PMID: 10825370).

    Article  CAS  PubMed  Google Scholar 

  21. Ivanov AA, Khuri FR, Fu H. Targeting protein-protein interactions as an anticancer strategy. Trends Pharmacol Sci. 2013;34(7):393–400. https://doi.org/10.1016/j.tips.2013.04.007. (PubMed PMID: 23725674; PubMed Central PMCID: PMCPMC3773978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang S, Zhang E, Long J, Hu Z, Peng J, Liu L, et al. Immune infiltration in renal cell carcinoma. Cancer Sci. 2019;110(5):1564–72. https://doi.org/10.1111/cas.13996. (PubMed PMID: 30861269; PubMed Central PMCID: PMCPMC6501001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Evangelista M, Zigmond S, Boone C. Formins: signaling effectors for assembly and polarization of actin filaments. J Cell Sci. 2003;116(Pt 13):2603–11. https://doi.org/10.1242/jcs.00611. (PubMed PMID: 12775772).

    Article  CAS  PubMed  Google Scholar 

  24. Higgs HN, Peterson KJ. Phylogenetic analysis of the formin homology 2 domain. Mol Biol Cell. 2005;16(1):1–13. https://doi.org/10.1091/mbc.e04-07-0565. (PubMed PMID: 15509653; PubMed Central PMCID: PMCPMC539145).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yan T, Zhang A, Shi F, Chang F, Mei J, Liu Y, et al. Integrin alphavbeta3-associated DAAM1 is essential for collagen-induced invadopodia extension and cell haptotaxis in breast cancer cells. J Biol Chem. 2018;293(26):10172–85. https://doi.org/10.1074/jbc.RA117.000327. (PubMed PMID: 29752407; PubMed Central PMCID: PMCPMC6028947).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shu M, Zheng X, Wu S, Lu H, Leng T, Zhu W, et al. Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells. Mol Cancer. 2011;10:59. https://doi.org/10.1186/1476-4598-10-59. (PubMed PMID: 21592405; PubMed Central PMCID: PMCPMC3129318).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li MY, Peng WH, Wu CH, Chang YM, Lin YL, Chang GD, et al. PTPN3 suppresses lung cancer cell invasiveness by counteracting Src-mediated DAAM1 activation and actin polymerization. Oncogene. 2019;38(44):7002–16. https://doi.org/10.1038/s41388-019-0948-6. (PubMed PMID: 31406243).

    Article  CAS  PubMed  Google Scholar 

  28. Katoh M, Katoh M. Identification and characterization of human DAAM2 gene in silico. Int J Oncol. 2003;22(4):915–20 (PubMed PMID: 12632087).

    CAS  PubMed  Google Scholar 

  29. Liu Y, Lusk CM, Cho MH, Silverman EK, Qiao D, Zhang R, et al. Rare variants in known susceptibility loci and their contribution to risk of lung cancer. J Thorac Oncol. 2018;13(10):1483–95. https://doi.org/10.1016/j.jtho.2018.06.016. (PubMed PMID: 29981437; PubMed Central PMCID: PMCPMC6366341).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sun SW, Zhou M, Chen L, Wu JH, Meng ZJ, Miao SY, et al. Whole exome sequencing identifies a rare variant in DAAM2 as a potential candidate in idiopathic pulmonary ossification. Ann Transl Med. 2019;7(14):327. https://doi.org/10.21037/atm.2019.06.14. (PubMed PMID: 31475197; PubMed Central PMCID: PMCPMC6694274).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leventoux N, Augustus M, Azar S, Riquier S, Villemin JP, Guelfi S, et al. Transformation foci in IDH1-mutated gliomas show STAT3 phosphorylation and downregulate the metabolic enzyme ETNPPL, a negative regulator of glioma growth. Sci Rep. 2020;10(1):5504. https://doi.org/10.1038/s41598-020-62145-1. (PubMed PMID: 32218467; PubMed Central PMCID: PMCPMC7099072).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu W, Krishna S, Garcia C, Lin CJ, Mitchell BD, Scott KL, et al. Daam2 driven degradation of VHL promotes gliomagenesis. Elife. 2017. https://doi.org/10.7554/eLife.31926. (PubMed PMID: 29053101; PubMed Central PMCID: PMCPMC5650470).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Matusek T, Djiane A, Jankovics F, Brunner D, Mlodzik M, Mihaly J. The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development. 2006;133(5):957–66. https://doi.org/10.1242/dev.02266. (PubMed PMID: 16469972).

    Article  CAS  PubMed  Google Scholar 

  34. Zeng ZY, Zhou YH, Zhang WL, Xiong W, Fan SQ, Li XL, et al. Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway. Hum Pathol. 2007;38(1):120–33. https://doi.org/10.1016/j.humpath.2006.06.023. (PubMed PMID: 16996564).

    Article  CAS  PubMed  Google Scholar 

  35. Wu X, Sun X, Chen C, Bai C, Wang X. Dynamic gene expressions of peripheral blood mononuclear cells in patients with acute exacerbation of chronic obstructive pulmonary disease: a preliminary study. Crit Care. 2014;18(6):508. https://doi.org/10.1186/s13054-014-0508-y. (PubMed PMID: 25407108; PubMed Central PMCID: PMCPMC4305227).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hao L, Liu Y, Yu X, Zhu Y, Zhu Y. Formin homology domains of Daam1 bind to Fascin and collaboratively promote pseudopodia formation and cell migration in breast cancer. Cell Prolif. 2021;54(3): e12994. https://doi.org/10.1111/cpr.12994. (PubMed PMID: 33458919; PubMed Central PMCID: PMCPMC7941230).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mei J, Xu B, Hao L, Xiao Z, Liu Y, Yan T, et al. Overexpressed DAAM1 correlates with metastasis and predicts poor prognosis in breast cancer. Pathol Res Pract. 2020;216(3): 152736. https://doi.org/10.1016/j.prp.2019.152736. (PubMed PMID: 31757662).

    Article  CAS  PubMed  Google Scholar 

  38. Mei J, Yan T, Huang Y, Xia T, Chang F, Shen S, et al. A DAAM1 3’-UTR SNP mutation regulates breast cancer metastasis through affecting miR-208a-5p-DAAM1-RhoA axis. Cancer Cell Int. 2019;19:55. https://doi.org/10.1186/s12935-019-0747-8. (PubMed PMID: 30911286; PubMed Central PMCID: PMCPMC6417246).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mei J, Huang Y, Hao L, Liu Y, Yan T, Qiu T, et al. DAAM1-mediated migration and invasion of ovarian cancer cells are suppressed by miR-208a-5p. Pathol Res Pract. 2019;215(7): 152452. https://doi.org/10.1016/j.prp.2019.152452. (PubMed PMID: 31104928).

    Article  CAS  PubMed  Google Scholar 

  40. Labat-de-Hoz L, Alonso MA. Formins in human disease. Cells. 2021. https://doi.org/10.3390/cells10102554. (PubMed PMID: 34685534; PubMed Central PMCID: PMCPMC8533766).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mei J, Liu Y, Yu X, Hao L, Ma T, Zhan Q, et al. YWHAZ interacts with DAAM1 to promote cell migration in breast cancer. Cell Death Discov. 2021;7(1):221. https://doi.org/10.1038/s41420-021-00609-7. (PubMed PMID: 34453038; PubMed Central PMCID: PMCPMC8397740).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZL analyzed the data and wrote the manuscript. XW performed the cytological experiments. YZ proposed the conception and revised the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Yichao Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Ethical approval for the study was granted by the Clinical Research Ethics Committee, Nanjing Medical University.

Informed consent

Written informed consent was taken from each participant with the assistance of Shanghai Outdo Biotech Company (China).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wei, X. & Zhu, Y. The prognostic value of DAAM2 in lower grade glioma, liver cancer, and breast cancer. Clin Transl Oncol 25, 2224–2238 (2023). https://doi.org/10.1007/s12094-023-03111-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03111-x

Keywords

Navigation