Skip to main content

Advertisement

Log in

Research on CRISPR/system in major cancers and its potential in cancer treatments

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Cancer is a serious public health problem in the world and the prevention and control of cancer has become one of the health strategies of governments around the world. According to the data of the International Agency for Research on Cancer (IARC), about 8 million people die of cancer every year in the world. With the continuous progress of medical technology, there are many methods to treat cancer at present. However, many treatment methods have achieved different therapeutic effects, some of them have obvious toxic and side effects. Therefore, it is necessary to study simpler and more effective new therapies for alleviating pain and prolonging lifetime of patients. In this view, we focus on the application progress of CRISPR system in some major cancers and its potential in cancer treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Khan F, Pandupuspitasari N, Chun-Jie H, Ao Z, Jamal M, Zohaib A, et al. CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.9646.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guernet A, Grumolato L. CRISPR/Cas9 editing of the genome for cancer modeling. Methods. 2017;121–122:130–7. https://doi.org/10.1016/j.ymeth.2017.03.007.

    Article  CAS  PubMed  Google Scholar 

  3. Chen M, Mao A, Xu M, Weng Q, Mao J, Ji J. CRISPR–Cas9 for cancer therapy: opportunities and challenges. Cancer Lett. 2019. https://doi.org/10.1016/j.canlet.2019.01.017.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mirza Z, Karim S. Advancements in CRISPR/Cas9 technology—focusing on cancer therapeutics and beyond. Semin Cell Dev Biol. 2019;96:13–211. https://doi.org/10.1016/j.semcdb.2019.05.026.

    Article  CAS  PubMed  Google Scholar 

  5. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33. https://doi.org/10.1128/jb.169.12.5429-5433.1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jansen R, Embden JDAV, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565–75. https://doi.org/10.1046/j.1365-2958.2002.02839.x.

    Article  CAS  PubMed  Google Scholar 

  7. Jansen R, van Embden JDA, Gaastra W, Schouls LM. Identification of a novel family of sequence repeats among prokaryotes. OMICS J Integr Biol. 2002;6(1):23–33. https://doi.org/10.1089/15362310252780816.

    Article  CAS  Google Scholar 

  8. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709. https://doi.org/10.1126/science.1138140.

    Article  CAS  PubMed  Google Scholar 

  9. Terns MP, Terns RM. CRISPR-based adaptive immune systems. Curr Opin Microbiol. 2011;14(3):321–7. https://doi.org/10.1016/j.mib.2011.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY). 2013;339(6121):819–23. https://doi.org/10.1126/science.1231143.

    Article  CAS  Google Scholar 

  11. Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ, et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther. 2016;24(3):556–63. https://doi.org/10.1038/mt.2015.220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sanjana NE. Genome-scale CRISPR pooled screens. Anal Biochem. 2017;532:95–9. https://doi.org/10.1016/j.ab.2016.05.014.

    Article  CAS  PubMed  Google Scholar 

  13. Fujii M, Clevers H, Sato T. Modeling human digestive diseases with CRISPR–Cas9-modified organoids. Gastroenterology. 2019;156(3):562–76. https://doi.org/10.1053/j.gastro.2018.11.048.

    Article  CAS  PubMed  Google Scholar 

  14. Najah S, Saulnier C, Pernodet J-L, Bury-Moné S. Design of a generic CRISPR–Cas9 approach using the same sgRNA to perform gene editing at distinct loci. BMC Biotechnol. 2019;19(1):18. https://doi.org/10.1186/s12896-019-0509-7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu Y, Tao W, Wen S, Li Z, Yang A, Deng Z, et al. In vitro CRISPR/Cas9 system for efficient targeted DNA editing. mBio. 2015;6(6):e01714–e0171501715. https://doi.org/10.1128/mBio.01714-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2008;190(4):1390. https://doi.org/10.1128/JB.01412-07.

    Article  CAS  PubMed  Google Scholar 

  17. Hou Z, Zhang Y, Propson NE, Howden SE, Chu L-F, Sontheimer EJ, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA. 2013;110(39):15644–9. https://doi.org/10.1073/pnas.1313587110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186–91. https://doi.org/10.1038/nature14299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561):481–5. https://doi.org/10.1038/nature14592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, et al. Engineered CRISPR–Cas9 nuclease with expanded targeting space. Science (New York, NY). 2018;361(6408):1259–62. https://doi.org/10.1126/science.aas9129.

    Article  CAS  Google Scholar 

  21. Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556(7699):57–63. https://doi.org/10.1038/nature26155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, NY). 2012;337(6096):816–21. https://doi.org/10.1126/science.1225829.

    Article  CAS  Google Scholar 

  23. Zhang Y, Heidrich N, Ampattu Biju J, Gunderson Carl W, Seifert HS, Schoen C, et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell. 2013;50(4):488–503. https://doi.org/10.1016/j.molcel.2013.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol. 2018;36(3):265–71. https://doi.org/10.1038/nbt.4066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim Y-H, et al. Directed evolution of CRISPR–Cas9 to increase its specificity. Nat Commun. 2018;9(1):3048. https://doi.org/10.1038/s41467-018-05477-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science (New York, NY). 2016;351(6268):84–8. https://doi.org/10.1126/science.aad5227.

    Article  CAS  Google Scholar 

  27. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, et al. Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature. 2017;550(7676):407–10. https://doi.org/10.1038/nature24268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kulcsár PI, Tálas A, Huszár K, Ligeti Z, Tóth E, Weinhardt N, et al. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Genome Biol. 2017;18(1):190. https://doi.org/10.1186/s13059-017-1318-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ran F, Cong L, Yan W, Scott D, Gootenberg J, Kriz A, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015. https://doi.org/10.1038/nature14299.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yamada M, Watanabe Y, Gootenberg JS, Hirano H, Ran FA, Nakane T, et al. Crystal structure of the minimal Cas9 from Campylobacter jejuni reveals the molecular diversity in the CRISPR–Cas9 systems. Mol Cell. 2017;65(6):1109–21.e3. https://doi.org/10.1016/j.molcel.2017.02.007.

    Article  CAS  PubMed  Google Scholar 

  31. Zetsche B, Gootenberg Jonathan S, Abudayyeh Omar O, Slaymaker Ian M, Makarova Kira S, Essletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell. 2015;163(3):759–71. https://doi.org/10.1016/j.cell.2015.09.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, et al. CRISPR–Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science (New York, NY). 2018;360(6387):436–9. https://doi.org/10.1126/science.aar6245.

    Article  CAS  Google Scholar 

  33. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816. https://doi.org/10.1126/science.1225829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DBT, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science (New York, NY). 2016;353(6299):aaf5573. https://doi.org/10.1126/science.aaf5573.

    Article  CAS  Google Scholar 

  35. Gootenberg J, Abudayyeh O, Lee J, Essletzbichler P, Dy A, Joung J, et al. Nucleic acid detection with CRISPR–Cas13a/C2c2. Science. 2017. https://doi.org/10.1126/science.aam9321.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhao X, Liu L, Lang J, Cheng K, Wang Y, Li X, et al. A CRISPR–Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Lett. 2018;431:171–81. https://doi.org/10.1016/j.canlet.2018.05.042.

    Article  CAS  PubMed  Google Scholar 

  37. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61–8. https://doi.org/10.1016/j.canlet.2016.01.043.

    Article  CAS  PubMed  Google Scholar 

  38. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clinicians. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  Google Scholar 

  39. Fidler-Benaoudia M, Bray F. Global cancer inequalities. Front Oncol. 2018. https://doi.org/10.3389/fonc.2018.00293.

    Article  Google Scholar 

  40. Wei C, Wang F, Liu W, Zhao W, Yang Y, Li K, et al. CRISPR/Cas9 targeting of the androgen receptor suppresses the growth of LNCaP human prostate cancer cells. Mol Med Rep. 2017. https://doi.org/10.3892/mmr.2017.8257.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen B, Liu J, Ho TT, Ding X, Mo YY. ERK-mediated NF-κB activation through ASIC1 in response to acidosis. Oncogenesis. 2016;5(12):e279. https://doi.org/10.1038/oncsis.2016.81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Murphy M, Chatterjee SS, Jain S, Katari M, DasGupta R. TCF7L1 modulates colorectal cancer growth by inhibiting expression of the tumor-suppressor gene EPHB3. Sci Rep. 2016;6(1):28299. https://doi.org/10.1038/srep28299.

    Article  PubMed  PubMed Central  Google Scholar 

  43. O'Rourke KP, Loizou E, Livshits G, Schatoff EM, Baslan T, Manchado E, et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat Biotechnol. 2017;35(6):577–82. https://doi.org/10.1038/nbt.3837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zou F, Mao R, Yang L, Lin S, Lei K, Zheng Y, et al. Targeted deletion of miR-139-5p activates MAPK, NF-κB and STAT3 signaling and promotes intestinal inflammation and colorectal cancer. FEBS J. 2016;283(8):1438–52. https://doi.org/10.1111/febs.13678.

    Article  CAS  PubMed  Google Scholar 

  45. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clinicians. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551.

    Article  Google Scholar 

  46. Sotiropoulos SN, Moeller S, Jbabdi S, Xu J, Andersson JL, Auerbach EJ, et al. Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE. Magn Reson Med. 2013;70(6):1682–9. https://doi.org/10.1002/mrm.24623.

    Article  CAS  PubMed  Google Scholar 

  47. Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell. 2017;171(2):481–94.e15. https://doi.org/10.1016/j.cell.2017.09.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Romero R, Sayin VI, Davidson SM, Bauer MR, Singh SX, LeBoeuf SE, et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat Med. 2017;23(11):1362–8. https://doi.org/10.1038/nm.4407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang C, Jin H, Gao D, Wang L, Evers B, Xue Z, et al. A CRISPR screen identifies CDK7 as a therapeutic target in hepatocellular carcinoma. Cell Res. 2018;28(6):690–2. https://doi.org/10.1038/s41422-018-0020-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10(8):550–60. https://doi.org/10.1038/nrc2886.

    Article  CAS  PubMed  Google Scholar 

  51. Zhen S, Hua L, Takahashi Y, Narita S, Liu Y-H, Li Y. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun. 2014;450(4):1422–6. https://doi.org/10.1016/j.bbrc.2014.07.014.

    Article  CAS  PubMed  Google Scholar 

  52. Yoshiba T, Saga Y, Urabe M, Uchibori R, Matsubara S, Fujiwara H, et al. CRISPR/Cas9-mediated cervical cancer treatment targeting human papillomavirus E6. Oncol Lett. 2019;17(2):2197–206. https://doi.org/10.3892/ol.2018.9815.

    Article  CAS  PubMed  Google Scholar 

  53. Corrales L, Matson V, Flood B, Spranger S, Gajewski TF. Innate immune signaling and regulation in cancer immunotherapy. Cell Res. 2017;27(1):96–108. https://doi.org/10.1038/cr.2016.149.

    Article  CAS  PubMed  Google Scholar 

  54. Chifman J, Pullikuth A, Chou JW, Bedognetti D, Miller LD. Conservation of immune gene signatures in solid tumors and prognostic implications. BMC Cancer. 2016;16(1):911. https://doi.org/10.1186/s12885-016-2948-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zanetti M. A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol. 2017;14(2):115–28. https://doi.org/10.1038/nrclinonc.2016.67.

    Article  CAS  PubMed  Google Scholar 

  56. Wu J, Jordan M, Waxman DJ. Metronomic cyclophosphamide activation of anti-tumor immunity: tumor model, mouse host, and drug schedule dependence of gene responses and their upstream regulators. BMC Cancer. 2016;16(1):623. https://doi.org/10.1186/s12885-016-2597-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJC, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543(7643):113–7. https://doi.org/10.1038/nature21405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Omrane I, Benammar-Elgaaied A. The immune microenvironment of the colorectal tumor: Involvement of immunity genes and microRNAs belonging to the TH17 pathway. Biochim Biophys Acta (BBA) Rev Cancer. 2015;1856(1):28–38. https://doi.org/10.1016/j.bbcan.2015.04.001.

    Article  CAS  Google Scholar 

  59. Cheon H, Borden EC, Stark GR. Interferons and their stimulated genes in the tumor microenvironment. Semin Oncol. 2014;41(2):156–73. https://doi.org/10.1053/j.seminoncol.2014.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Steinhart Z, Pavlovic Z, Chandrashekhar M, Hart T, Wang X, Zhang X, et al. Genome-wide CRISPR screens reveal a Wnt–FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med. 2017;23(1):60–8. https://doi.org/10.1038/nm.4219.

    Article  CAS  PubMed  Google Scholar 

  61. Chen L, Alexe G, Dharia N, Ross L, Conway A, Wang E, et al. CRISPR–Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J Clin Investig. 2017. https://doi.org/10.1172/JCI90793.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Song C, Li Y, Mou H, Moore J, Park A, Pomyen Y, et al. Genome-wide CRISPR screen identifies regulators of mitogen-activated protein kinase as suppressors of liver tumors in mice. Gastroenterology. 2016. https://doi.org/10.1053/j.gastro.2016.12.002.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature. 2016. https://doi.org/10.1038/nature.2016.20988.

    Article  PubMed  Google Scholar 

  64. Lu Y, Xue J, Deng T, Zhou X, Yu K, Deng L, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med. 2020;26(5):732–40. https://doi.org/10.1038/s41591-020-0840-5.

    Article  CAS  PubMed  Google Scholar 

  65. Stadtmauer E, Fraietta J, Davis M, Cohen A, Weber K, Lancaster E, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020;367:eaba7365. https://doi.org/10.1126/science.aba7365.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Key Specialty Construction Project of Clinical Pharmacy (Grant no.30305030698), the Science and Technology Program of Sichuan Province (Grant nos. 2009SZ0226, 2014FZ0103, 2015JQO027, 2015ZR0160, 20ZDYF1490, and 20CXTD0043), the Health Department of Sichuan Province (Grant nos. 100491, 120111, 20PJ110, and 17ZD038), Sichuan Cancer Hospital (Grant no. YB2019001), Chengdu City Science and Technology Project (Grant no.11PPYB010SF-289), and the Young Scholars Foundation of Sichuan Provincial People’s Hospital (Grant nos. 30305030606 and 30305030859). The Cadre Health Care Research Project of Sichuan Province (Grant no. 2019-801), and Zambon Pharmaceutical Scientific Research Foundation of the Chengdu Pharmaceutical Association (Grant no. 201905).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this paper.

Corresponding author

Correspondence to H. Xiao.

Ethics declarations

Conflict of interest

All the authors have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Z. Liu and Z. Liao contributed equally to this work should be considered as co-first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liao, Z., Chen, Y. et al. Research on CRISPR/system in major cancers and its potential in cancer treatments. Clin Transl Oncol 23, 425–433 (2021). https://doi.org/10.1007/s12094-020-02450-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02450-3

Keywords

Navigation