Skip to main content

Advertisement

Log in

Combined strategies for tumor immunotherapy with nanoparticles

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

A brief review of tumor immunotherapies shows significant advancements in academic research and preclinical studies. Analysis of different immune cell pathways, including macrophage activation, natural killer cells, and dendritic cell presentation show promising clinical results when targeted with different nanoparticle polymer and gold materials. Following a brief discussion on immuno-oncology successes, detailed results are discussed in macrophage activation, dendritic cell presentation, and lysis of tumor cells with natural killer cells. Common targets include tumor-associated macrophages and induction of the proinflammatory phenotype, dual targeting of cell and humoral immunity with dendritic cells, and creating chimeric antigen receptors on natural killer cells. An analysis of the results shows a variety of nanoparticle synthesis methods are required depending on drug type and tissue type affected by tumors. Future research is discussed in conjunction with a brief analysis of completed clinical trial data on cancer therapies using nanoparticles to date. Although paclitaxel-loaded albumin nanoparticles are most frequently studied, academic research shows there may be additional mechanisms of action to elicit anti-tumor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adapted from a detailed timeline from Oiseth et al.)

Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kapadia CH, Perry JL, Tian S, Luft JC, DeSimone JM. Nanoparticulate immunotherapy for cancer. J Control Release. 2015;219:167–80.

    Article  CAS  PubMed  Google Scholar 

  2. Oiseth SJ, Aziz MS. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 2017;3(10):250.

    Article  CAS  Google Scholar 

  3. Cousin S, Seneschal J, Italiano A. Toxicity profiles of immunotherapy. Pharmacol Ther. 2018;181:91–100.

    Article  CAS  PubMed  Google Scholar 

  4. Van Woensel M, Mathivet T, Wauthoz N, Rosière R, Garg AD, Agostinis P, Mathieu V, Kiss R, Lefranc F, Boon L, et al. Sensitization of glioblastoma tumor micro- environment to chemo- and immunotherapy by galectin-1 intranasal knock-down strategy. Sci Rep. 2017;7(1):1–14.

    Article  CAS  Google Scholar 

  5. Lin JC, Liu CL, Lee JJ, Liu TP, Ko WC, Huang YC, Wu CH, Chen YJ. Sorafenib induces autophagy and suppresses activation of human macrophage. Int Immunopharmacol. 2013;15(2):333–9.

    Article  CAS  PubMed  Google Scholar 

  6. Chen P, Cescon M, Bonaldo P. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy. 2014;10(2):192–200.

    Article  CAS  PubMed  Google Scholar 

  7. Zhan X, Jia L, Niu Y, Qi H, Chen X, Zhang Q, Zhang J, Wang Y, Dong L, Wang C. Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy. Biomaterials. 2014;35(38):10046–57.

    Article  CAS  PubMed  Google Scholar 

  8. Sagiv-Barfi I, Czerwinski DK, Levy S, Alam IS, Mayer AT, Gambhir SS, Levy R. Eradication of spontaneous malignancy by local immunotherapy. Sci Transl Med. 2018;10(31):4488.

    Article  CAS  Google Scholar 

  9. Li C, Zhang X, Chen Q, Zhang J, Li W, Hu H, Zhao X, Qiao M, Chen D. Synthetic polymeric mixed micelles targeting lymph nodes trigger enhanced cellular and humoral immune responses. ACS Appl Mater Interfaces. 2018;10(3):2874–89.

    Article  CAS  PubMed  Google Scholar 

  10. Foley K, Kim V, Jaffee E, Zheng L. Current progress in immunotherapy for pancreatic cancer. Cancer Lett. 2016;381(1):244–51.

    Article  CAS  PubMed  Google Scholar 

  11. Pitchaimani A, Duong T, Nguyen T, Aryal S. Biomaterials natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials. 2018;160:124–37.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Li N, Suh H, Irvine DJ. Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity. Nat Commun. 2018;9(1):6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kwong B, Liu H, Irvine DJ. Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy. Biomaterials. 2011;32(22):5134–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019;20(2):273–86.

    Article  PubMed  Google Scholar 

  15. Wilson DR, Sen R, Sunshine JC, Pardoll DM, Green JJ, Kim YJ. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. Nanomed Nanotechnol Biol Med. 2018;14(2):237–46.

    Article  CAS  Google Scholar 

  16. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9:12.

    Article  PubMed Central  CAS  Google Scholar 

  17. Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci. 2014;1:13.

    Google Scholar 

  18. Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, Ochiai H, Kitahara S, Unan EC, Reddy TP, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology. 2015;61(5):1591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mocan T, Matea C, Tabaran F, Iancu C, Orasan R, Mocan L. In vitro administration of gold nanoparticles functionalized with MUC-1 protein fragment generates anticancer vaccine response via macrophage activation and polarization mechanism. J Cancer. 2015;6(6):583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jin H, Wan C, Zou Z, Zhao G, Zhang L, Geng Y, Chen T, Huang A, Jiang F, Feng J-P, et al. Tumor ablation and therapeutic immunity induction by an injectable peptide hydrogel. ACS Nano. 2018;12:3295–310 (acsnano.7b08148).

    Article  CAS  PubMed  Google Scholar 

  21. Sehgal K, Ragheb R, Fahmy TM, Dhodapkar MV, Dhodapkar KM. Nanoparticle-mediated combinatorial targeting of multiple human dendritic cell (DC) subsets leads to enhanced T cell activation via IL-15–dependent DC crosstalk. J Immunol. 2014;193(5):2297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiao P, Otto M, Geng Q, Li C, Li F, Butch ER, Snyder SE, Zhou H, Yan B. Enhancing both CT imaging and natural killer cell-mediated cancer cell killing by a GD2-targeting nanoconstruct. J Mater Chem B. 2016;4(3):513–20.

    Article  CAS  PubMed  Google Scholar 

  23. Siegler EL, Kim YJ, Chen X, Siriwon N, Mac J, Rohrs JA, Bryson PD, Wang P. Combination cancer therapy using chimeric antigen receptor-engineered natural killer cells as drug carriers. Mol Ther. 2017;25(12):2607–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klingemann H, Boissel L, Toneguzzo F. Natural killer cells for immunotherapy—advantages of the NK-92 cell line over blood NK cells. Front Immunol. 2016;7:1–7.

    Article  CAS  Google Scholar 

  25. Wang-Gillam A, Li CP, Bodoky G, Dean A, Shan YS, Jameson G, MacArulla T, Lee KH, Cunningham D, Blanc JF, et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet. 2016;387(10018):545–57.

    Article  CAS  PubMed  Google Scholar 

  26. Hao RT, Chen J, Zhao LH, Liu C, Wang OC, Huang GL, Zhang XH, Zhao J. Sentinel lymph node biopsy using carbon nanoparticles for Chinese patients with papillary thyroid microcarcinoma. Eur J Surg Oncol. 2012;38(8):718–24.

    Article  CAS  PubMed  Google Scholar 

  27. Northfelt DW, Dueck AC, Flynn TP, Sander PJ, Stella PJ, Melnik M, Pavey ES, EP. Phase II trial combining nab-paclitaxel (NP), gemcitabine (G), and bevacizumab (B) in patients (Pts) with metastatic breast cancer (MBC): NCCTG N0735 (Abstract). J Clin Oncol. 2011; 29(Suppl 15):A-1126.

    Article  Google Scholar 

  28. Roy V, Laplant BR, Gross GG, Bane CL, Palmieri FM. Phase II trial of weekly nab (nanoparticle albumin-bound)-paclitaxel (nab-paclitaxel) (Abraxane®) in combination with gemcitabine in patients with metastatic breast cancer (N0531). Ann Oncol. 2009;20(3):449–53.

    Article  CAS  PubMed  Google Scholar 

  29. Yardley D, Burris H, Peacock N, Raefsky E, Melnik M, Inhorn R, Shipley D, Hainsworth J. A Pilot study of adjuvant nanoparticle albumin-bound (Nab) paclitaxel and cyclophosphamide, with trastuzumab in HER2-positive patients, in the treatment of early-stage breast cancer. Breast Cancer Res Treat. 2010;123(2):471–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Marissa Gray at Stevens Institute of Technology for supporting this review paper and guiding the focus of research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Savitsky or X. Yu.

Ethics declarations

Conflict of interest

No conflicts of interest are reported by the authors.

Ethical approval

No human studies were conducted in the development of this review paper.

Informed consent

Informed consent is not required for this type of study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savitsky, K., Yu, X. Combined strategies for tumor immunotherapy with nanoparticles. Clin Transl Oncol 21, 1441–1449 (2019). https://doi.org/10.1007/s12094-019-02081-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-019-02081-3

Keywords

Navigation