Skip to main content

Advertisement

Log in

Disintegrin and metalloproteinases (ADAMs) expression in gastroesophageal reflux disease and in esophageal adenocarcinoma

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Clinically useful marker molecules for the progression of gastroesophageal reflux disease and Barrett’s esophagus (BE) to esophageal adenocarcinoma (EAC) are lacking. Many adenocarcinomas and inflammatory conditions exhibit increased expression of ADAMs, ‘a disintegrin and metalloproteinases’.

Methods

We assessed the expression of five ADAMs (9, 10, 12, 17, 19) in three esophageal cell lines (Het-1A, OE19, OE33) by RT-PCR and Western blotting, and in human samples of normal esophagus, esophagitis, BE, Barrett’s dysplasia, and EAC by RT-PCR, and in selected samples by immunohistochemistry.

Results

EAC patients showed increased mRNA expression of ADAMs 9, 12, 17 and 19, as compared to controls. At immunohistochemistry, ADAM9 and ADAM10 proteins were increased in EAC. Patient samples also showed increased mRNA expression of ADAM12 in esophagitis, of ADAM9 in BE, and of ADAMs 9, 12 and 19 in Barrett’s dysplasia, as compared to controls. Two EAC cell lines showed increased ADAM9 mRNA.

Conclusions

ADAM9 expression is increased in EAC. Its predecessors show increased ADAM9 mRNA expression. The importance of the alterations in ADAM expression for the development of EAC, and their use as marker molecules, warrant further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Holmes RS, Vaughan TL. Epidemiology and pathogenesis of esophageal cancer. Semin Radiat Oncol. 2007;17:2–9.

    Article  PubMed  Google Scholar 

  2. Parrilla P, Martinez de Haro LF, Ortiz A, Munitiz V, Molina J, Bermejo J, et al. Long-term results of a randomized prospective study comparing medical and surgical treatment of Barrett’s esophagus. Ann Surg. 2003;237:291–8.

    PubMed  PubMed Central  Google Scholar 

  3. Spechler SJ, Lee E, Ahnen D, Goyal RK, Hirano I, Ramirez F, et al. Long-term outcome of medical and surgical therapies for gastroesophageal reflux disease: follow-up of a randomized controlled trial. JAMA. 2001;285:2331–8.

    Article  CAS  PubMed  Google Scholar 

  4. Corey KE, Schmitz SM, Shaheen NJ. Does a surgical antireflux procedure decrease the incidence of esophageal adenocarcinoma in Barrett’s esophagus? A meta-analysis. Am J Gastroenterol. 2003;98:2390–4.

    Article  PubMed  Google Scholar 

  5. Prasad GA, Bansal A, Sharma P, Wang KK. Predictors of progression in Barrett’s esophagus: current knowledge and future directions. Am J Gastroenterol. 2010;105:1490–502.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Garton KJ, Gough PJ, Raines EW. Emerging roles for ectodomain shedding in the regulation of inflammatory responses. J Leukoc Biol. 2006;79:1105–16.

    Article  CAS  PubMed  Google Scholar 

  7. Mochizuki S, Okada Y. ADAMs in cancer cell proliferation and progression. Cancer Sci. 2007;98:621–8.

    Article  CAS  PubMed  Google Scholar 

  8. Murphy G. The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer. 2008;8:929–41.

    Article  CAS  PubMed  Google Scholar 

  9. Duffy MJ, Mullooly M, O’Donovan N, Sukor S, Crown J, Pierce A, et al. The ADAMs family of proteases: new biomarkers and therapeutic targets for cancer? Clin Proteomics. 2011;8:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duffy MJ, McKiernan E, O’Donovan N, McGowan PM. Role of ADAMs in cancer formation and progression. Clin Cancer Res. 2009;15:1140–4.

    Article  CAS  PubMed  Google Scholar 

  11. Franze E, Caruso R, Stolfi C, Sarra M, Cupi ML, Ascolani M, et al. High expression of the “A Disintegrin And Metalloprotease” 19 (ADAM19), a sheddase for TNF-alpha in the mucosa of patients with inflammatory bowel diseases. Inflamm Bowel Dis. 2013;19:501–11.

    Article  PubMed  Google Scholar 

  12. Yoshimura T, Tomita T, Dixon MF, Axon AT, Robinson PA, Crabtree JE. ADAMs (a disintegrin and metalloproteinase) messenger RNA expression in Helicobacter pylori-infected, normal, and neoplastic gastric mucosa. J Infect Dis. 2002;185:332–40.

    Article  CAS  PubMed  Google Scholar 

  13. Lagarde SM, ten Kate FJ, Richel DJ, Offerhaus GJ, van Lanschot JJ. Molecular prognostic factors in adenocarcinoma of the esophagus and gastroesophageal junction. Ann Surg Oncol. 2007;14:977–91.

    Article  CAS  PubMed  Google Scholar 

  14. Baren JP, Stewart GD, Stokes A, Gray K, Pennington CJ, O’Neill R, et al. mRNA profiling of the cancer degradome in oesophago-gastric adenocarcinoma. Br J Cancer. 2012;107:143–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rokkas T, Pistiolas D, Sechopoulos P, Robotis I, Margantinis G. Relationship between Helicobacter pylori infection and esophageal neoplasia: a meta-analysis. Clin Gastroenterol Hepatol. 2007;5:1413–7, 7 e1–2.

    Article  Google Scholar 

  16. Boonstra JJ, van Marion R, Beer DG, Lin L, Chaves P, Ribeiro C, et al. Verification and unmasking of widely used human esophageal adenocarcinoma cell lines. J Natl Cancer Inst. 2010;102:271–4.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nair KS, Naidoo R, Chetty R. Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value. J Clin Pathol. 2005;58:343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carl-McGrath S, Lendeckel U, Ebert M, Roessner A, Rocken C. The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer. Int J Oncol. 2005;26:17–24.

    CAS  PubMed  Google Scholar 

  19. Grutzmann R, Luttges J, Sipos B, Ammerpohl O, Dobrowolski F, Alldinger I, et al. ADAM9 expression in pancreatic cancer is associated with tumour type and is a prognostic factor in ductal adenocarcinoma. Br J Cancer. 2004;90:1053–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sung SY, Kubo H, Shigemura K, Arnold RS, Logani S, Wang R, et al. Oxidative stress induces ADAM9 protein expression in human prostate cancer cells. Cancer Res. 2006;66:9519–26.

    Article  CAS  PubMed  Google Scholar 

  21. Mazzocca A, Coppari R, De Franco R, Cho JY, Libermann TA, Pinzani M, et al. A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res. 2005;65:4728–38.

    Article  CAS  Google Scholar 

  22. Shintani Y, Higashiyama S, Ohta M, Hirabayashi H, Yamamoto S, Yoshimasu T, et al. Overexpression of ADAM9 in non-small cell lung cancer correlates with brain metastasis. Cancer Res. 2004;64:4190–6.

    Article  CAS  PubMed  Google Scholar 

  23. Xu Q, Liu X, Cai Y, Yu Y, Chen W. RNAi-mediated ADAM9 gene silencing inhibits metastasis of adenoid cystic carcinoma cells. Tumour Biol. 2010;31:217–24.

    Article  PubMed  Google Scholar 

  24. Sihvo EI, Salminen JT, Rantanen TK, Ramo OJ, Ahotupa M, Farkkila M, et al. Oxidative stress has a role in malignant transformation in Barrett’s oesophagus. Int J Cancer. 2002;102:551–5.

    Article  CAS  PubMed  Google Scholar 

  25. Mongaret C, Alexandre J, Thomas-Schoemann A, Bermudez E, Chereau C, Nicco C, et al. Tumor invasion induced by oxidative stress is dependent on membrane ADAM 9 protein and its secreted form. Int J Cancer. 2011;129:791–8.

    Article  CAS  PubMed  Google Scholar 

  26. Santiago-Josefat B, Esselens C, Bech-Serra JJ, Arribas J. Post-transcriptional up-regulation of ADAM17 upon epidermal growth factor receptor activation and in breast tumors. J Biol Chem. 2007;282:8325–31.

    Article  CAS  PubMed  Google Scholar 

  27. Hikita A, Tanaka N, Yamane S, Ikeda Y, Furukawa H, Tohma S, et al. Involvement of a disintegrin and metalloproteinase 10 and 17 in shedding of tumor necrosis factor-alpha. Biochem Cell Biol. 2009;87:581–93.

    Article  CAS  PubMed  Google Scholar 

  28. Tselepis C, Perry I, Dawson C, Hardy R, Darnton SJ, McConkey C, et al. Tumour necrosis factor-alpha in Barrett’s oesophagus: a potential novel mechanism of action. Oncogene. 2002;21:6071–81.

    Article  CAS  PubMed  Google Scholar 

  29. Reiss K, Ludwig A, Saftig P. Breaking up the tie: disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. Pharmacol Ther. 2006;111:985–1006.

    Article  CAS  PubMed  Google Scholar 

  30. Tselepis C, Morris CD, Wakelin D, Hardy R, Perry I, Luong QT, et al. Upregulation of the oncogene c-myc in Barrett’s adenocarcinoma: induction of c-myc by acidified bile acid in vitro. Gut. 2003;52:174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taniguchi T, Asano Y, Akamata K, Aozasa N, Noda S, Takahashi T, et al. Serum levels of ADAM12-S: possible association with the initiation and progression of dermal fibrosis and interstitial lung disease in patients with systemic sclerosis. J Eur Acad Dermatol Venereol. 2013;27:747–53.

    Article  CAS  PubMed  Google Scholar 

  32. Saadi A, Shannon NB, Lao-Sirieix P, O’Donovan M, Walker E, Clemons NJ, et al. Stromal genes discriminate preinvasive from invasive disease, predict outcome, and highlight inflammatory pathways in digestive cancers. Proc Natl Acad Sci USA. 2010;107:2177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kavanagh ME, O’Sullivan KE, O’Hanlon C, O’Sullivan JN, Lysaght J, Reynolds JV. The esophagitis to adenocarcinoma sequence; the role of inflammation. Cancer Lett. 2014;345:182–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kerna I, Kisand K, Suutre S, Murde M, Tamm A, Kumm J, et al. The ADAM12 is upregulated in synovitis and postinflammatory fibrosis of the synovial membrane in patients with early radiographic osteoarthritis. Joint Bone Spine. 2014;81:51–6.

    Article  CAS  PubMed  Google Scholar 

  35. Rocks N, Paulissen G, El Hour M, Quesada F, Crahay C, Gueders M, et al. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie. 2008;90:369–79.

    Article  CAS  PubMed  Google Scholar 

  36. Mendelson J, Song S, Li Y, Maru DM, Mishra B, Davila M, et al. Dysfunctional transforming growth factor-beta signaling with constitutively active Notch signaling in Barrett’s esophageal adenocarcinoma. Cancer. 2011;117:3691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pietras K, Ostman A. Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res. 2010;316:1324–31.

    Article  CAS  PubMed  Google Scholar 

  39. Spechler SJ, Souza RF. Barrett’s esophagus. N Engl J Med. 2014;371:836–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank doctors Eero Sihvo, Juha Kauppi, Tarja Peräkylä and Perttu Arkkila for their invaluable assistance in providing part of the patient samples in the General Thoracic and Esophageal Surgery clinic, Heart and Lung Centre, Helsinki University Hospital, and in the Department of Gastroenterology, Helsinki University Hospital. The authors also wish to thank Mrs. Yvonne Sundström for her skilful technical and secretarial assistance. The authors did not receive any writing assistance.

Funding

The study was financially supported by grants from the Sigrid Jusélius Foundation (no grant number) and Helsinki University Hospital Research Funds (TYH 2012131 and TYH 2014240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Puolakkainen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 54 kb)

Supplementary material 2 (DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kauttu, T., Mustonen, H., Vainionpää, S. et al. Disintegrin and metalloproteinases (ADAMs) expression in gastroesophageal reflux disease and in esophageal adenocarcinoma. Clin Transl Oncol 19, 58–66 (2017). https://doi.org/10.1007/s12094-016-1503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-016-1503-3

Keywords

Navigation