Skip to main content
Log in

Genomics and Biochemistry of Metabolic Pathways for the C1 Compounds Utilization in Colorless Sulfur Bacterium Beggiatoa leptomitoformis D-402

  • Original Research Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The metabolic pathways of one-carbon compounds utilized by colorless sulfur bacterium Beggiatoa leptomitoformis D-402 were revealed based on comprehensive analysis of its genomic organization, together with physiological, biochemical and molecular biological approaches. Strain D-402 was capable of aerobic methylotrophic growth with methanol as a sole source of carbon and energy and was not capable of methanotrophic growth because of the absence of genes of methane monooxygenases. It was established that methanol can be oxidized to CO2 in three consecutive stages. On the first stage methanol was oxidized to formaldehyde by the two PQQ (pyrroloquinolinequinone)-dependent methanol dehydrogenases (MDH): XoxF and Mdh2. Formaldehyde was further oxidized to formate via the tetrahydromethanopterin (H4MPT) pathway. And on the third stage formate was converted to CO2 by NAD+-dependent formate dehydrogenase Fdh2. Finally, it was established that endogenous CO2, formed as a result of methanol oxidation, was subsequently assimilated for anabolism through the Calvin–Benson–Bassham cycle. The similar way of one-carbon compounds utilization also exists in representatives of another freshwater Beggiatoa species—B. alba.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dubinina G, Savvichev A, Orlova M, Gavrish E, Verbarg S et al (2017) Beggiatoa leptomitoformis sp. nov., the first freshwater member of the genus capable of chemolithoautotrophic growth. Int J Syst Evol Microbiol 67:197–204. https://doi.org/10.1099/ijsem.0.001584

    Article  PubMed  Google Scholar 

  2. Salman V, Amann R, Girnth A-C, Polerecky L, Bailey JV et al (2011) A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria. Syst Appl Microbiol 34:243–259. https://doi.org/10.1111/j.1462-2920.2011.02513.x

    Article  CAS  PubMed  Google Scholar 

  3. Strohl WR, Larkin JM (1978) Enumeration, isolation, and characterization of Beggiatoa from freshwater sediments. Appl Environ Microbiol 36:755–770

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Grabovich M, Patritskaya V, Muntyan M, Dubinina G (2001) Lithoautotrophic growth of the freshwater strain Beggiatoa D-402 and energy conservation in a homogeneous culture under microoxic conditions. FEMS Microbiol Lett 204:341–345. https://doi.org/10.1111/j.1574-6968.2001.tb10908.x

    Article  CAS  PubMed  Google Scholar 

  5. Teske A, Nelson DC (2006) The genera Beggiatoa and Thioploca. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 784–810

    Chapter  Google Scholar 

  6. Nelson DC, Castenholz RW (1981) Organic nutrition of Beggiatoa sp. J Bacteriol 147:236–247

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mezzino MJ, Strohl WR, Larkin JM (1984) Characterization of Beggiatoa alba. Arch Microbiol 137:139–144

    Article  CAS  Google Scholar 

  8. Orlova MV, Shatsky ND, Belousova EV, Grabovich MY (2016) The ability of freshwater filamentous sulfur bacteria from the family Beggiatoaceae to assimilate molecular nitrogen: molecular detection and expression of nifH—the marker gene of nitrogen fixation. Sorpt Chromatogr Process 16:280–285

    Google Scholar 

  9. Spiridonova EM, Berg IA, Kolganova TV, Ivanovsky RN, Kuznetsov BB et al (2004) A system of oligonucleotide primers for the amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of different taxonomicgroups of bacteria. Mikrobiologiia 73:316–325

    CAS  Google Scholar 

  10. Pfennig N, Lippert KD (1966) Über das vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Microbiol 55:425–432

    Google Scholar 

  11. Kuznetsov SI, Dubinina GA (1989) Methods of investigation of aqueous microorganisms. In: Yu I, Sorokin M (eds). Nauka, Moscow

  12. Rabinovich VA, Sherman EE (1964) Modification of method Winkler for analysis of soluble oxygen in small volumes of luquid (in Russian). In: Perfiliev BV (ed) Role of microorganisms in formation of iron-manganese lakustrine ores. Nauka, Moscow, pp 81–86

    Google Scholar 

  13. Fomenkov A, Vincze T, Grabovich M, Dubinina G, Orlova M et al (2015) Complete genome sequence of the freshwater colorless sulfur bacterium Beggiatoa leptomitiformis neotype strain D-402T. Genome Announc. https://doi.org/10.1128/genomeA.01436-15

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  Google Scholar 

  15. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:182–185. https://doi.org/10.1093/nar/gkm321

    Article  Google Scholar 

  16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  17. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J (2009) DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25:119–120. https://doi.org/10.1093/bioinformatics/btn578

    Article  CAS  PubMed  Google Scholar 

  18. Lowry OH, Rosenbrough N, Farr A, Randall RJ (1951) Protein measurement with the folin pihenold reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  19. Hurwitz J, Weissbach A, Horecker BL, Smyrniotis PZ (1956) Spinach phosphoribulokinase. J Biol Chem 218:769–783

    CAS  PubMed  Google Scholar 

  20. Anthony C, Zatman LJ (1967) The microbial oxidation of methanol. Purification and properties of the alcohol dehydrogenase of Pseudomonas sp. M27. Biochem J 104:953–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kalyuzhnaya MG, Hristova KR, Lidstrom ME, Chistoserdova L (2008) Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190:3817–3823. https://doi.org/10.1093/10.1128/JB.00180-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Egorov AM, Avilova TV, Dikov MM, Popov VO, Rodionov YV et al (1979) NAD+-dependent formate dehydrogenase from methyllotrophic bacterium strain. Purification and characterization. Eur J Biochem 99:569–576

    Article  CAS  PubMed  Google Scholar 

  23. Jewell T, Huston S, Nelson D (2008) Methylotrophy in freshwater Beggiatoa alba strains. Appl Environ Microbiol 74:5575–5578. https://doi.org/10.1128/AEM.00379-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chu F, Beck DA, Lidstrom ME (2016) MxaY regulates the lanthanide-mediated methanol dehydrogenase switch in Methylomicrobium buryatense. PeerJ. https://doi.org/10.7717/peerj.2435

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hibi Y, Asai K, Arafuka H, Hamajima M, Iwama T et al (2011) Molecular structure of La3+-induced methanol dehydrogenase-like protein in Methylobacterium radiotolerans. J Biosci Bioeng 111:547–549. https://doi.org/10.1016/j.jbiosc.2010.12.017

    Article  CAS  PubMed  Google Scholar 

  26. Nakagawa T, Mitsui R, Tani A, Sasa K, Tashiro S et al (2012) A catalytic role of XoxF1 as La3+-dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1. PLoS ONE. https://doi.org/10.1371/journal.pone.0050480

    Article  PubMed  PubMed Central  Google Scholar 

  27. Grabovich MYu, Churikova VV, Dubinina GA, Lebedeva VYu (1998) Mixotrophic and lithoheterotrophic growth of the freshwater filamentous sulfur bacterium Beggiatoa leptomitiformis D-402. Microbiology 67:383–388

    CAS  Google Scholar 

  28. Trotsenko YuA, Doronina NV, Torgonskaya ML (2010) Aerobic methylobacteria. ONTI PSC RAS, Pushchino

    Google Scholar 

  29. Tamoi M, Ishikawa T, Takeda T, Shigeoka S (1996) Molecular characterization and resistance to hydrogen peroxide of two fructose-1,6-bisphosphatases from Synechococcus PCC 7942. Arch Biochem Biophys 334:27–36. https://doi.org/10.1006/abbi.1996.0425

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere gratitude to Alexey Fomenkov, Tamas Vincze, Brian P. Anton and Richard J. Roberts for their help with genome sequencing.

Funding

This work was supported by Russian Foundation for Basic Research (Grant 18-04-00556).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Y. Grabovich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

. The final concentration of additional components in the cultivation medium in different growth conditions. Table S2. Primers used in this work with their annealing temperatures. Table S3. Metabolic genes of Beggiatoa leptomitoformis D-402 that are discussed in the manuscript. Genes are organized based on their relevance to pathways. Table S4. Identity between proteins of two PQQ-dependent dehydrogenases of methanol/ethanol family of B. leptomitoformis D-402 and B. alba and typical methylotrophs. Table S5. Identity between proteins of the Pqq-clusters of B. leptomitoformis D-402 and Methylobacterium extorquens AM1 and Beggiatoa alba B18LD. Table S6. Identity between proteins which take part in formaldehyde oxidation to CO2 of B. leptomitoformis D-402 and Methylobacterium extorquens AM1 and Beggiatoa alba B18LD (PDF 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlova, M.V., Tarlachkov, S.V., Kulinchenko, E.I. et al. Genomics and Biochemistry of Metabolic Pathways for the C1 Compounds Utilization in Colorless Sulfur Bacterium Beggiatoa leptomitoformis D-402. Indian J Microbiol 58, 415–422 (2018). https://doi.org/10.1007/s12088-018-0737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-018-0737-x

Keywords

Navigation