Skip to main content

Advertisement

Log in

A flow network model for animal movement on a landscape with application to invasion

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Animal movement, whether for foraging, mate-seeking, predator avoidance, dispersal, or migration, is a fundamental aspect of ecology that shapes spatial abundance distributions, genetic compositions, and dynamics of populations. A variety of movement models have been used for predicting the effects of natural or human-caused landscape changes, invading species, or other disturbances on local ecology. Here we introduce the flow network—a general modeling framework for population dynamics and movement in a metapopulation representing a network of habitat sites (nodes). Based on the principles of physical transport phenomena such as fluid flow through pipes (Pouiselle’s Law) and analogously, the flow of electric current across a circuit (Ohm’s Law), the flow network provides a novel way of modeling movement, where flow rates are functions of relative node pressures and the resistance to movement between them. Flow networks offer the flexibility of incorporating abiotic and biotic conditions that affect either pressures, resistance, or both. To illustrate an application of the flow network, we present a theoretical invasion scenario. We consider the effects of spatial structure on the speed of invasion by varying the spatial regularity of node arrangement. In the context of invasion, we model management actions targeting nodes or edges, and consider the effects on speed of invasion, node occupation, and total abundance. The flow network approach offers the flexibility to incorporate spatial heterogeneity in both rates of flow and site pressures and offers an intuitive approach to connecting population dynamics and landscape features to model movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriaensen F, Chardon J, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of least-cost modelling as a functional landscape model. Landscape Urban Plan 64(4):233–247

    Article  Google Scholar 

  • Amarasekare P (2004) The role of density-dependent dispersal in source–sink dynamics. J Theor Biol 226(2):159–168

    Article  PubMed  Google Scholar 

  • Amos JN, Bennett AF, Mac Nally R, Newell G, Pavlova A, Radford JQ, Thomson JR, White M, Sunnucks P (2012) Predicting landscape-genetic consequences of habitat loss, fragmentation and mobility for multiple species of woodland birds. PLoS One 7(2):e30,888

    Article  CAS  Google Scholar 

  • Armsworth PR (2002) Recruitment limitation, population regulation, and larval connectivity in reef fish metapopulations. Ecology 83(4):1092–1104

    Article  Google Scholar 

  • Barrios JM, Verstraeten WW, Maes P, Aerts JM, Farifteh J, Coppin P (2012) Using the gravity model to estimate the spatial spread of vector-borne diseases. Int J Environ Res Publ Health 9(12):4346–4364

    Article  Google Scholar 

  • Bascompte J, Solé RV (1996) Habitat fragmentation and extinction thresholds in spatially explicit models. J Anim Ecol 65(4):465–473

    Article  Google Scholar 

  • Bossenbroek JM, Kraft CE, Nekola JC (2001) Prediction of long-distance dispersal using gravity models: zebra mussel invasion of inland lakes. Ecol Appl 11(6):1778–1788

    Article  Google Scholar 

  • Carroll C, Miquelle DG (2006) Spatial viability analysis of amur tiger panthera tigris altaica in the russian far east: the role of protected areas and landscape matrix in population persistencerstudio. J Appl Ecol 43(6):1056–1068. https://doi.org/10.1111/j.1365-2664.2006.01237.x

    Article  Google Scholar 

  • Dingle H (2014) Migration: the biology of life on the move. Oxford University Press, USA

    Book  Google Scholar 

  • Dingle H, Drake VA (2007) What is migration? Bioscience 57(2):113–121

    Article  Google Scholar 

  • Elliot NB, Cushman SA, Macdonald DW, Loveridge AJ (2014) The devil is in the dispersers: predictions of landscape connectivity change with demography. J Appl Ecol 51(5):1169–1178

    Article  Google Scholar 

  • Facon B, David P (2006) Metapopulation dynamics and biological invasions: a spatially explicit model applied to a freshwater snail. Am Nat 168:769–783. https://doi.org/10.1086/508669

    Article  PubMed  Google Scholar 

  • Geritz SA, Gyllenberg M, Ondráċek P (2009) Evolution of density-dependent dispersal in a structured metapopulation. Math Biosci 219(2):142–148

    Article  PubMed  Google Scholar 

  • Gilarranz LJ, Bascompte J (2012) Spatial network structure and metapopulation persistence. J Theor Biol 297:11–16

    Article  PubMed  Google Scholar 

  • Grilli J, Barabás G, Allesina S (2015) Metapopulation persistence in random fragmented landscapes. PLoS Comput Biol 11(5): e1004,251

    Article  CAS  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press

  • Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404 (6779):755–758

    Article  PubMed  CAS  Google Scholar 

  • Hill M, Caswell H (1999) Habitat fragmentation and extinction thresholds on fractal landscapes. Ecol Lett 2(2):121–127

    Article  Google Scholar 

  • Lande R (1987) Extinction thresholds in demographic models of territorial populations. Am Nat 130(4):624–635. https://doi.org/10.1086/284734

    Article  Google Scholar 

  • Leung B, Drake JM, Lodge DM (2004) Predicting invasions: propagule pressure and the gravity of allee effects. Ecology 85(6):1651–1660. http://www.esajournals.org/doi/abs/10.1890/02-0571

    Article  Google Scholar 

  • Marrotte R, Gonzalez A, Millien V (2014) Landscape resistance and habitat combine to provide an optimal model of genetic structure and connectivity at the range margin of a small mammal. Molecul Ecol http://onlinelibrary.wiley.com/doi/10.1111/mec.12847/abstract

  • Marrotte RR, Bowman J (2017) The relationship between least-cost and resistance distance. PloS one 12(3):e0174,212

    Article  CAS  Google Scholar 

  • Mateo-Sánchez MC, Balkenhol N, Cushman S, Pérez T, Domnguez A, Saura S (2015) Estimating effective landscape distances and movement corridors: comparison of habitat and genetic data. Ecosphere 6(4):1–16. https://doi.org/10.1890/ES14-00387.1. art59

    Article  Google Scholar 

  • Matthysen E (2012) Multicausality of dispersal: a review. In: Clobert J, Baguette M, Benton TG, Bullock JM (eds). Dispersal Ecology and Evolution. Oxford University Press. pp 3–18

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10):2712–2724. http://www.esajournals.org/doi/abs/10.1890/07-1861.1

    Article  PubMed  Google Scholar 

  • Morales JM, Moorcroft PR, Matthiopoulos J, Frair JL, Kie JG, Powell RA, Merrill EH, Haydon DT (2010) Building the bridge between animal movement and population dynamics. Philos Trans R Soc B: Biol Sci 365(1550):2289–2301

    Article  Google Scholar 

  • North AR, Godfray HCJ (2017) The dynamics of disease in a metapopulation: the role of dispersal range. J Theor Biol 418:57–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Parvinen K (2002) Evolutionary branching of dispersal strategies in structured metapopulations. J Math Biol 45(2):106–124

    Article  PubMed  Google Scholar 

  • Peacock SJ, Bateman AW, Krkoṡek M, Lewis MA (2016) The dynamics of coupled populations subject to control. Theor Ecol 9(3):365–380

    Article  Google Scholar 

  • Peterman WE, Connette GM, Semlitsch RD, Eggert LS (2014) Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Molec Ecol 23(10):2402–2413. http://onlinelibrary.wiley.com/doi/10.1111/mec.12747/full

    Article  Google Scholar 

  • Potapov A, Muirhead JR, Lele SR, Lewis MA (2011) Stochastic gravity models for modeling lake invasions. Ecol Modell 222(4):964–972. http://www.sciencedirect.com/science/article/pii/S0304380010003820

    Article  Google Scholar 

  • Sæther BE, Engen S, Lande R (1999) Finite metapopulation models with density–dependent migration and stochastic local dynamics. Proc R Soc London B: Biol Sci 266(1415):113–118

    Article  Google Scholar 

  • Silva JA, De Castro ML, Justo DA (2001) Stability in a metapopulation model with density-dependent dispersal. Bull Math Biol 63(3):485–505

    Article  PubMed  CAS  Google Scholar 

  • Soares-Filho BS, Cerqueira GC, Pennachin CL (2002) Dinamicaa stochastic cellular automata model designed to simulate the landscape dynamics in an amazonian colonization frontier. Ecol Modell 154(3):217–235

    Article  Google Scholar 

  • Söndgerath D, Schröder B (2002) Population dynamics and habitat connectivity affecting the spatial spread of populations–a simulation study. Landsc Ecol 17(1):57–70

    Article  Google Scholar 

  • Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Molec Ecol 19(17):3576–3591. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2010.04657.x/full

    Article  Google Scholar 

  • Strevens CM, Bonsall MB (2011) Density-dependent population dynamics and dispersal in heterogeneous metapopulations. J Anim Ecol 80(1):282–293

    Article  PubMed  Google Scholar 

  • Taylor CM, Laughlin AJ, Hall RJ (2016) The response of migratory populations to phenological change: a migratory flow network modelling approach. J Anim Ecol 85(3):648–659

    Article  PubMed  Google Scholar 

  • Truscott J, Ferguson NM (2012) Evaluating the adequacy of gravity models as a description of human mobility for epidemic modelling. PLoS Comput Biol 8(10):e1002,699

    Article  CAS  Google Scholar 

  • Xia Y, Bjørnstad ON, Grenfell BT (2004) Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics. Am Nat 164(2):267–281

    Article  PubMed  Google Scholar 

Download references

Funding

Funding for this work was made available from the ByWater Institute at Tulane University and the National Science Foundation (BCS-1313703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalyn Rael.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 72.7 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rael, R., Taylor, C. A flow network model for animal movement on a landscape with application to invasion. Theor Ecol 11, 271–280 (2018). https://doi.org/10.1007/s12080-018-0373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-018-0373-4

Keywords

Navigation