Skip to main content

Advertisement

Log in

Projections of Watershed Pollutant Loads Using a Spatially Explicit, Agent-Based Land Use Conversion Model: A Case Study of Berkeley County, West Virginia

  • Published:
Applied Spatial Analysis and Policy Aims and scope Submit manuscript

Abstract

This research presents a methodology to make projections of land use conversions in Berkeley County, West Virginia and then utilizes these projections to estimate water quality impacts on the Opequon Creek in Berkeley County. Empirical estimates for factors that influence the land use conversion probability are captured using parameters from a spatial logistic regression (SLR) model. Then, an agent-based, probabilistic land use conversion (APLUC) model is used to explore the impacts of policies on land use conversion decisions using estimates from actual land use change from 2001 to 2011 in SLR model. Three policy scenarios are developed: (1) no policy implementation, (2) a 15.24 m (50 ft) buffer zone policy of no development applied to all streams, and (3) 15.24 m buffer policy applied only on critical source area (CSA) watersheds. The projected land use patterns in the APLUC model are driven by individual land conversion decisions over 50 model runs of 10 iterations each under each policy scenario. The results show that with no policy scenario, most conversions occurred near existing residential land use and urban centers. Residential land use conversions are greatly reduced in a 15.24 m buffer policy around all streams in watershed. Spatial patterns generated under a 15.24 m buffer policy in CSAs only showed that future projected land use changes occurred close to major highways and shifted the residential development to the northern part of the Opequon Creek. Finally, the impacts of these three policies on water quality are estimated using an ArcSWAT model, a graphical user interface for SWAT (Soil and Water Assessment Tool). This model indicates that the 15.24 m buffer policy in CSAs is most effective among the three policies in reducing the pollutant loads. This study suggests that carefully designed policies which discourage residential land use conversions in CSAs, result in less pollutant loads by shifting the location of residential conversions to less critical areas where agricultural land is dominant in the watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. * shows significant at 0.05 and ** shows significant at 0.01.

References

  • Alig, Ralph J. (2010). Economic modeling of effects of climate change on forest sector and mitigation options: a compendium of briefing papers. USDA

  • Almeida, C. M., Batty, M., Monteiro, A. M. V., Câmara, G., Soares-Filho, B. S., Cerqueira, G. C., et al. (2003). Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation. Computers, Environment and Urban Systems, 27(5), 481–509.

    Article  Google Scholar 

  • Alonso, W. (1964). Location and land use. Cambridge: MA. Harvard University Press.

    Book  Google Scholar 

  • Arbab, Nazia N. (2014). Application of a Spatially Explicit, Agent-Based Land Use Conversion Model to Assess Water Quality Outcomes under Buffer Policies. (PhD dissertation). West Virginia University.

  • Atkinson, P. M., & Massari, R. (1998). Generalised linear modelling of susceptibility to land sliding in the central Apennines, Italy. Computers & Geosciences, 24, 373–385.

    Article  Google Scholar 

  • Balzter, H., Braun, P. W., & Köhler, W. (1998). Cellular automata models for vegetation dynamics. Ecological Modelling, 107(2–3), 113–125.

    Article  Google Scholar 

  • Batty, M. (2012). A generic framework for computational spatial modeling. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 19–50). New York, NY: Springer.

    Chapter  Google Scholar 

  • BBER (2014). Population trends in West Virginia through 2030. Morgantown, WV: Bureau of Business and Economic Research, College of Business and Economics, West Virginia University.

    Google Scholar 

  • Benenson, I., & Torrens, P. (2004). Geosimulation: Automata-based modeling of urban phenomena. West Sussex: Wiley.

    Book  Google Scholar 

  • Berkeley County Development Authority. (2014) “Facts and Figures” Retrieved from http://www.developmentauthority.com/

  • Berkeley County Planning Commission. (2006). Berkeley County, comprehensive plan update. Retrieved from http://www.berkeleycountycomm.org/docs/2006BCCompPlan.pdf

  • Berkeley County Planning Commission. (2009): Subdivision ordinance (2009). Draft ordinance with county commission approved changes. Retrieved from http://www.berkeleycountycomm.org/docs/draft_subreg0409.pdf

  • Bhaduri, B., Minner, M., & Tatalovich, S. H., J. (2001). Long-term hydrologic impact of urbanization: a tale of two models. Journal of Water Resources Planning and Management, 127, 13–19.

  • Bockstael, N. E. (1996). Modeling economics and ecology: the importance of a spatial perspective. American Journal of Agricultural Economics, 78(5), 1168–1180.

    Article  Google Scholar 

  • Bockstael, N. E., & Bell, K. P. (1998). Land use patterns and water quality: the effect of differential land management controls. In R. Just & S. Netanyahu (Eds.), International water and resource economics consortium, conflict and cooperation on trans-boundary water resources (pp. 169–191). Norwell, MA: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568.

    Article  Google Scholar 

  • Clark Labs. (2012). IDRISI Selva, Clark University http://www.clarklabs.org/

  • Clarke, K. C., & Gaydos, L. J. (1998). Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12(7), 699–714.

    Article  Google Scholar 

  • Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple Regression/Correlation analysis for the behavioral sciences. Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers.

    Google Scholar 

  • Corbett, C. W., Wahl, M., Porter, D. E., Edwards, D., & Moise, C. (1997). Nonpoint source runoff modeling. A comparison of a forested watershed and an urban watershed on the South Carolina coast. Journal of Experimental Marine Biology and Ecology, 213(1), 133–149.

    Article  Google Scholar 

  • Coutu, G. W., & Vega, C. (2007). Impacts of land use changes on runoff generation in the east branch of the Brandywine creek watershed using a GIS-based hydrologic model. Middle States Geographer, 40, 142–149.

    Google Scholar 

  • Dosskey, M. G., Vidon, P., Gurwick, N. P., Allan, C. J., Duval, T. P., & Lowrance, R. (2010). The role of riparian vegetation in protecting and improving chemical water quality in streams. JAWRA Journal of the American Water Resources Association, 46(2), 261–277.

    Article  Google Scholar 

  • DOT (Department of Transportation) Maryland Transit Administration. (2014) Retrieved from: http://www.mdot.maryland.gov/

  • Duan, S., Kaushal, S. S., Groffman, P. M., Band, L. E., & Belt, K. T. (2012). Phosphorus export across an urban to rural gradient in the Chesapeake Bay watershed. Journal of Geophysical Research: Biogeosciences, 117(G1), − G01025.

  • EPA (United States Environmental Protection Agency). (2007). Multi-resolution land characteristics consortium (MLRC). Retrieved from http://www.epa.gov/mrlc/definitions.html

  • ESRI. (2014). ArcGIS Help 10.2. Retrieved from: http://resources.arcgis.com/en/help/main/10.2/index.html

  • Fragkias, M., & Seto, K. C. (2007). Modeling urban growth in data-sparse environments: a new approach. Planning and Design, 34(5), 858–883.

    Article  Google Scholar 

  • Gimblett, R. H. (2002). Integrating geographic information systems and agent-based modeling techniques for stimulating social and ecological processes. USA: Oxford University Press.

    Google Scholar 

  • Goetz, S. J., Wright, R. K., Smith, A. J., Zinecker, E., & Schaub, E. (2003). IKONOS imagery for resource management: tree cover, impervious surfaces, and riparian buffer analyses in the mid Atlantic region. Remote Sensing of Environment, 88, 195–208.

    Article  Google Scholar 

  • Goodspeed, R. (2007). Leapfrog' sprawl in West Virginia. Retrieved from http://goodspeedupdate.com/2007/2104

  • Hagerstrand, T. (1965). A Monte Carlo approach to diffusion (pp. 43–67). VI: Archive of European Sociology.

    Google Scholar 

  • Hatten, M., Lapp, J., Bennett, D., & Stottlemyer, D. (2011). WV stream and wetland valuation (SWVM) metric development. Lexington, KY: Appalachian Stream Mitigation Workshop.

    Google Scholar 

  • Heppenstall, A. J., & Crooks, A. T. (2012). In Batty M., See L. M. (Eds.), Agent-based models of geographical systems Springer.

  • Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., et al. (2007). Completion of the 2001 national land cover database for the conterminous United States. Photogrammetric Engineering and Remote Sensing, 73(4), 337–341.

    Google Scholar 

  • HUD (U.S. Department of Housing and Urban Development). (2012). Comprehensive housing market analysis: Hagerstown-Martinsburg, Maryland-West Virginia. (Research No. U.S. Department of Housing and Urban Development). Retrieved from http://www.huduser.org/publications/pdf/HagerstownMD_comp_12.pdf

  • Hunsaker, C. T., & Levine, D. A. (1995). Hierarchical approaches to the study of water quality in rivers. Bioscience, 45(3, Ecology of Large Rivers), 193–203.

  • Irwin, E. G. (2010). New directions for urban economic models of land use change: incorporating spatial dynamics and heterogeneity. Journal of Regional Science, 50(1), 65–91.

    Article  Google Scholar 

  • Irwin, E. G., & Bockstael, N. E. (2002). Interacting agents, spatial externalities and the evolution of residential land use patterns. Journal of Economic Geography, 2(1), 31–54.

    Article  Google Scholar 

  • Irwin, E. G., & Bockstael, N. E. (2004). Land use externalities, open space preservation, and urban sprawl. Regional Science and Urban Economics, 34(6), 705–725.

    Article  Google Scholar 

  • Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J., & Xian, G. (2013). A comprehensive change detection method for updating the national land cover database to circa 2011. Remote Sensing of Environment, 132(0), 159–175.

  • Johnson, L., Richards, C., Host, G., & Arthur, J. (1997). Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology, 37(1), 193–208.

    Article  Google Scholar 

  • Jung, K. W., Lee, S. W., Hwang, H. S., & Jang, J. H. (2008). The effects of spatial variability of land use on stream water quality in a costal watershed. Paddy and Water Environment, 6, 275–284.

    Article  Google Scholar 

  • Karigomba, W. (2009). A spatial optimization approach to watershed water quality management: A case of the Opequon watershed. (PhD dissertation). West Virginia University.

  • Kaushal, S. S., Groffman, P. M., Band, L. E., Elliott, E. M., Shields, C. A., & Kendall, C. (2011). Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environmental Science & Technology, 45, 8225–8232.

    Article  Google Scholar 

  • Kitamura, R., Mokhtarian, P. L., & Laidet, L. (1997). A micro-analysis of land use and travel in five neighborhoods in the San Francisco bay area. Transportation, 24, 125–158.

    Article  Google Scholar 

  • Koontz, T. M. (2001). Money talks—but to whom? Financial versus nonmonetary motivations in land use decisions. Society and Natural Resources, 14, 51–65.

    Google Scholar 

  • Le, Q. B., Park, S. J., & Vlek, P. L. G. (2010). Land use dynamic simulator (LUDAS): a multi-agent system model for simulating spatio-temporal dynamics of coupled human–landscape system: 2. Scenario-based application for impact assessment of land-use policies. Ecological Informatics, 5(3), 203–221.

    Article  Google Scholar 

  • Lee, S. (2005). Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. International Journal of Remote Sensing, 26(7), 1477–1491.

    Article  Google Scholar 

  • Lee, S., Hwang, S., Lee, S., Hwang, H., & Sung, H. (2009). Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape and Urban Planning, 92(2), 80–89.

    Article  Google Scholar 

  • Li, Y. L., Liu, K., Li, L., & Xu, Z. X. (2012). Relationship of land use/cover on water quality in the Liao river basin, China. Procedia Environmental Sciences, 13(0), 1484–1493.

  • Liu, Y., Kong, X., Liu, Y., & Chen, Y. (2013). Simulating the conversion of rural settlements to town land based on multi-agent systems and cellular automata. PloS One, 8(11), e79300.

    Article  Google Scholar 

  • Louis, J. S., & Raines, L. G. (2003). Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity, Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, p.515, November 03–05, 2003

  • Manson, S. M. (2001). Simplifying complexity: a review of complexity theory. Geoforum, 32(3), 405–414.

    Article  Google Scholar 

  • Mejıa, A., Daly, E., Rossel, F., Jovanovic, T., & Gironas, J. (2014). A stochastic model of stream flow for urbanized basins. Water Resources Research, 50

  • Memarian, H., Balasundram, S. K., Talib, J. B., Sung, C. T. B., Sood, A. M., & Abbaspour, K. (2012). Validation of CA-markov for simulation of land use and cover change in the Langat basin, Malaysia. Journal of Geographic Information System, 4, 542–554.

    Article  Google Scholar 

  • Menard, S. (1995). Applied logistic regression analysis. Sage University Paper Series on Quantitative Applications in Social Sciences, 106, 98.

  • Mills, E. S. (1967). An aggregative model of resource allocation in a metropolitan area. American Economic Review, 57(2), 197–210.

    Google Scholar 

  • Muth, R. F. (1969). Cities and housing. Chicago: University of Chicago Press.

    Google Scholar 

  • Natural Resource Analysis Center (NRAC) (2007). Watershed characterization modeling system for ArcGIS 9.2, Release 1.0. Natural Resource Analysis Center: West Virginia University, Morgantown, WV.

    Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2005). Soil and water assessment tool - theoretical documentation – version 2005. Grassland, Soil and Water Research Laboratory, Agricultural Research Service and Blackland Research Center, Texas Agricultural Experiment Station, Temple, Texas. Retrieved from http://swat.tamu.edu/media/1292/swat2005theory.pdf

  • Niraula, R., Kalin, L., Srivastava, P., & Anderson, C. J. (2013). Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Ecological Modelling, 268(0), 123–133.

  • Olson, R. K., & Olson, A. H. (1999). Farmland loss in America. In R. K. Olson & T. A. Lyson (Eds.), Under the blade: The conversion of agricultural landscapes (pp. 15–52). Boulder, CO.: Westview Press.

    Google Scholar 

  • Osborne, L. L., & Wiley, M. J. (1988). Empirical relationships between land use/cover and stream water quality in an agricultural watershed. Journal of Environmental Management, 26, 9–27.

    Google Scholar 

  • Ozah, A. P., Dami, A., & Adesina, F. A. (2012). A deterministic cellular automata model for simulating rural land use dynamics: a case study of Lake Chad basin. Journal of Earth Science & Engineering, 2(1), 22.

    Google Scholar 

  • Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals of the Association of American Geographers, 93(2), 314–337.

    Article  Google Scholar 

  • Peterson, B. J., Wollheim, W. M., Mulholland, P. J., Webster, J. R., Meyer, J. L., Tank, J. L., et al. (2001). Control of nitrogen export from watersheds by headwater streams. Science, 292(5514), 86–90.

    Article  Google Scholar 

  • Pionke, H. B., Gburek, W. J., & Sharpley, A. N. (2000). Critical source area controls on water quality in an agricultural watershed located in the Chesapeake basin. Ecological Engineering, 14(4), 325–335.

    Article  Google Scholar 

  • Polhill, J. G., Parker, D., Brown, D., & Grimm, V. (2008). Using the ODD protocol for describing three agent-based social simulation models of land-use change. Journal of Artificial Societies and Social Simulation, 11(2), 3.

    Google Scholar 

  • Polyakov, M., & Zhang, D. (2008). Population growth and land use dynamics along urban–rural gradient. Journal of Agricultural and Applied Economics, 40(2), 649–666.

    Article  Google Scholar 

  • Pontius Jr., R. G., & Neeti, N. (2010). Uncertainty in the difference between maps of future land change scenarios. Land use and Ecosystems, 5, 39–50.

    Google Scholar 

  • Poudyal, N. C., Cho, S., Strickland, J. D., & Hodges, D. G. (2008). Socio-demographic and market forces of forest land use change on the northern Cumberland Plateau, Tennessee. International Journal of Ecological Economics & Statistics, 10(W08), 53–62.

    Google Scholar 

  • Pozzi, F., & Small, C. (2005). Analysis of urban land cover and population density in the United States. Photogrammetric Engineering and Remote Sensing, 71, 719–726.

    Article  Google Scholar 

  • Qian, Z. (2010). Without zoning: urban development and land use controls in Houston. Cities, 27(1), 31–41.

    Article  Google Scholar 

  • Roe, B., Irwin, E. G., & Marrow-Jones, H. A. (2004). The effects of farmland, farmland preservation, and other neighborhood amenities on housing values and residential growth. Land Economics, 80(1), 55–75.

    Article  Google Scholar 

  • Rosenberger, R. S., Gebremedhin, T. G., & Hailu, Y. G. (2002). An economic analysis of urbanization of agricultural land in West Virginia. (Research Paper No. 8).West Virginia Regional Research Institute.

  • Schueler, T., Fraley-McNeal, L., & Cappiella, K. (2009). Is impervious cover still important? Review of recent research. Journal of Hydrologic Engineering, 14(4), 309–315.

    Article  Google Scholar 

  • Serneels, S., & Lambin, E. F. (2001). Proximate causes of land-use change in Narok district, Kenya: a spatial statistical model. Agriculture, Ecosystems and Environment, 85, 65–81.

    Article  Google Scholar 

  • Shirzadi, A., Saro, L., Joo, O. H., & Chapi, K. (2012). A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran. Natural Hazards, 64(2), 1639–1656.

    Article  Google Scholar 

  • Sliva, L., & Williams, D. (2001). Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Research, 35(14), 3462–3472.

    Article  Google Scholar 

  • Sohn, K. T., & Park, S. M. (2008). Guidance on the choice of threshold for binary forecast modeling. Advances in Atmospheric Sciences, 25(1), 83–88.

    Article  Google Scholar 

  • Strager, M. P., Fletcher, J. J., Strager, J. M., Yuill, C. B., Eli, R. N., Todd Petty, J., et al. (2010). Watershed analysis with GIS: the watershed characterization and modeling system software application. Computers & Geosciences, 36(7), 970–976.

    Article  Google Scholar 

  • Tayyebi, A., Delavar, M. R., Yazdanpanah, M. J., Pijanowski, B. C., Saeedi, S., & Tayyebi, A. H. (2010). A spatial logistic regression model for simulating land use patterns, a case study of the shiraz metropolitan area of Iran. In Chuvieco, E., Li, J., Yang, X. (Ed.), Advances in earth observation of global change, Springer Press.

  • Tong, S. T. Y., & Chen, W. (2002). Modeling the relationship between land use and surface water quality. Journal of Environmental Management, 66(4), 377–393.

    Article  Google Scholar 

  • U.S. Census Bureau. (2000). Population density by census tract, 2000. Retrieved from http://www.census.gov/

  • U.S. Department of Transportation (1997): Bureau of Transportation Statistics. http://www.rita.dot.gov/bts/home

  • U.S. Geological Survey. (2014). National land cover database (NLCD). Retrieved from http://www.mrlc.gov/index.php

  • Valbuena, D., Verburg, P., Bregt, A. K., & Ligtenberg, A. (2010). An agent-based approach to model land-use change at a regional scale. Landscape Ecology, 25, 185–199.

    Article  Google Scholar 

  • Von Thünen, J. H. (1826). In P.G. Hall e. (Ed.), Die isolierte staat in beziehung auf landwirtshaft und nationalökonomie. (Wartenberg C M in 1966 Trans.). Pergamon Press, New York.

  • VT CTMDLWS. (2006). Opequon creek watershed TMDL implementation plan. Virginia tech center for TMDL and watershed studies. Retrieved from http://www.tmdl.bse.vt.edu/uploads/File/pub_db_files/Opequon%20Creek%20TMDL%20IP%2007-12-06.pdf

  • Water Resources and TMDL Center. (2008). Total maximum daily loads for selected streams in the Potomac direct drains watershed, West Virginia. Prepared for: West Virginia Department of Environmental Protection Division of Water and Waste Management Watershed Branch, TMDL section.

  • WVDEP (West Virginia Department of Environmental Protection), Canaan Valley Institute, & the Opequon Creek Project Team, Inc. (2008). Watershed based plan for mill creek “A tributary of Opequon creek, in the Potomac direct drains watershed” Berkeley County, WV. Retrieved from http://www.dep.wv.gov/WWE/Programs/nonptsource/WBP/Documents/WBP/MillCreekOpequon_WBP.pdf

  • Weng, Q. (2001). Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS. Environmental Management, 28(6), 737–748.

    Article  Google Scholar 

  • White, R., & Engelen, G. (1993). Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environment & Planning A, 25(8), 1175–1199.

    Article  Google Scholar 

  • White, E. M., Morzillo, A. T., & Alig, R. J. (2009). Past and projected rural land conversion in the US at state, regional, and national levels. Landscape and Urban Planning, 89(1–2), 37–48.

    Article  Google Scholar 

  • Wu, F. (2002). Calibration of stochastic cellular automata: the application to rural-urban land conversions. International Journal of Geographical Information Science, 16(8), 795–818.

    Article  Google Scholar 

  • Zeeb, C. N., & Burns, P. J. (1998). A comparison of failure probability estimates by Monte Carlo sampling and Latin hypercube sampling. (Technical Report). Sandia National Laboratories.

Download references

Acknowledgments

This research was partially supported by the West Virginia Agriculture and Forestry Experiment Station project WVA00636. We would like to thank the late Mark G. Middleton who provided insight and assistance on property parcel data for this research. We will always be grateful for his invaluable expertise and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazia N. Arbab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbab, N.N., Collins, A.R. & Conley, J.F. Projections of Watershed Pollutant Loads Using a Spatially Explicit, Agent-Based Land Use Conversion Model: A Case Study of Berkeley County, West Virginia. Appl. Spatial Analysis 11, 147–181 (2018). https://doi.org/10.1007/s12061-016-9197-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12061-016-9197-z

Keywords

Navigation