Skip to main content

Advertisement

Log in

Blood-based immunological monitoring after heart transplant. Current status and future prospects

  • Review Article
  • Published:
Indian Journal of Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

The development of effective immunosuppressive strategies has been a key to successful outcomes in heart transplantation. Immunosuppression however is a double-edged sword with consequences of rejection when underutilized and risk for infection, malignancy, and drug toxicity when used in excess. The search for non-invasive blood-based monitoring not only to assess allograft rejection but also to monitor overall state of immunosuppression remains very attractive, potentially reducing cost and complications and allowing more frequent testing to assess response to anti-rejection therapy. This review outlines the current status of blood-based immunological monitoring after heart transplantation including serological monitoring, biomarkers, and evolution of molecular technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Caves PK, Stinson EB, Billingham ME, Rider AK, Shumway NE. Diagnosis of human cardiac allograft rejection by serial cardiac biopsy. J Thorac Cardiovasc Surg. 1973;66:461–6.

    Article  CAS  Google Scholar 

  2. Patel JK, Kobashigawa JA. Improving survival during heart transplantation: diagnosis of antibody-mediated rejection and techniques for the prevention of graft injury. Futur Cardiol. 2012;8:623–35.

    Article  CAS  Google Scholar 

  3. Berry GJ, Angelini A, Burke MM, et al. The ISHLT working formulation for pathologic diagnosis of antibody-mediated rejection in heart transplantation: evolution and current status (2005–2011). J Heart Lung Transplant. 2011;30:601–11.

  4. Reddy SC, Rath GA, Ziady GM, Matesic C, Kormos R. Tricuspid flail leaflets after orthotopic heart transplant: a new complication of endomyocardial biopsy. J Am Soc Echocardiogr. 1993;6:223–6.

    Article  CAS  Google Scholar 

  5. Rodrigues AC, de Vylder A, Wellens F, Bartunek J, De Bruyne B. Right ventricular pseudoaneurysm as a complication of endomyocardial biopsy after heart transplantation. Chest. 1995;107:566–7.

    Article  CAS  Google Scholar 

  6. Henzlova MJ, Nath H, Bucy RP, Bourge RC, Kirklin JK, Rogers WJ. Coronary artery to right ventricle fistula in heart transplant recipients: a complication of endomyocardial biopsy. J Am Coll Cardiol. 1989;14:258–61.

    Article  CAS  Google Scholar 

  7. Crespo-Leiro MG, Zuckermann A, Bara C, et al. Concordance among pathologists in the second Cardiac Allograft Rejection Gene Expression Observational Study (CARGO II). Transplantation. 2012;94:1172–7.

  8. Halloran PF, Potena L, Van Huyen JD, et al. Building a tissue-based molecular diagnostic system in heart transplant rejection: the heart molecular microscope diagnostic (MMDx) system. J Heart Lung Transplant. 2017;36:1192–200.

    Article  Google Scholar 

  9. Loupy A, Duong Van-Huyen JP, Hidalgo L, et al. Gene expression profiling for the identification and classification of antibody-mediated heart rejection. Circulation. 2017;135:917–35.

    Article  CAS  Google Scholar 

  10. Ho EK, Vlad G, Colovai AI, et al. Alloantibodies in heart transplantation. Hum Immunol. 2009;70:825–9.

  11. Tran A, Fixler D, Huang R, Meza T, Lacelle C, Das BB. Donor-specific HLA alloantibodies: impact on cardiac allograft vasculopathy, rejection, and survival after pediatric heart transplantation. J Heart Lung Transplant. 2016;35:87–91.

    Article  Google Scholar 

  12. Clerkin KJ, Farr MA, Restaino SW, et al. Donor-specific anti-HLA antibodies with antibody-mediated rejection and long-term outcomes following heart transplantation. J Heart Lung Transplant. 2017;36:540–5.

  13. Loupy A, Cazes A, Guillemain R, et al. Very late heart transplant rejection is associated with microvascular injury, complement deposition and progression to cardiac allograft vasculopathy. Am J Transplant. 2011;11:1478–87.

  14. Kobashigawa J, Colvin M, Potena L, et al. The management of antibodies in heart transplantation: An ISHLT consensus document. J Heart Lung Transplant. 2018;37:537–47.

  15. Patel JK, Kobashigawa JA. Thoracic organ transplantation: laboratory methods. Methods Mol Biol. 2013;1034:127–43.

    Article  CAS  Google Scholar 

  16. Zhang X, Reinsmoen NL. Impact of non-human leukocyte antigen-specific antibodies in kidney and heart transplantation. Front Immunol. 2017;8:434.

    PubMed  PubMed Central  Google Scholar 

  17. Zhang Q, Cecka JM, Gjertson DW, et al. HLA and MICA: targets of antibody-mediated rejection in heart transplantation. Transplantation. 2011;91:1153–8.

  18. Jurcevic S, Ainsworth ME, Pomerance A, et al. Antivimentin antibodies are an independent predictor of transplant-associated coronary artery disease after cardiac transplantation. Transplantation. 2001;71:886–92.

  19. Reinsmoen NL, Lai CH, Mirocha J, et al. Increased negative impact of donor HLA-specific together with non-HLA-specific antibodies on graft outcome. Transplantation. 2014;97:595–601.

  20. Labarrere CA, Nelson DR, Park JW. Pathologic markers of allograft arteriopathy: insight into the pathophysiology of cardiac allograft chronic rejection. Curr Opin Cardiol. 2001;16:110–7.

    Article  CAS  Google Scholar 

  21. Fitzsimons S, Evans J, Parameshwar J, Pettit SJ. Utility of troponin assays for exclusion of acute cellular rejection after heart transplantation: a systematic review. J Heart Lung Transplant. 2018;37:631–8.

    Article  Google Scholar 

  22. Franekova J, Hoskova L, Secnik P Jr, et al. The role of timely measurement of galectin-3, NT-proBNP, cystatin C and hsTnT in predicting prognosis and heart function after heart transplantation. Clin Chem Lab Med. 2016;54:339–44.

    Article  CAS  Google Scholar 

  23. Damodaran A, Dardas T, Wu AH, et al. Changes in serial B-type natriuretic peptide level independently predict cardiac allograft rejection. J Heart Lung Transplant. 2012;31:708–14.

  24. Kittleson MM, Skojec DV, Wittstein IS, et al. The change in B-type natriuretic peptide levels over time predicts significant rejection in cardiac transplant recipients. J Heart Lung Transplant. 2009;28:704–9.

  25. Rossano JW, Denfield SW, Kim JJ, et al. B-type natriuretic peptide is a sensitive screening test for acute rejection in pediatric heart transplant patients. J Heart Lung Transplant. 2008;27:649–54.

  26. Deng MC, Eisen HJ, Mehra MR, et al. Noninvasive discrimination of rejection in cardiac allograft recipients using gene expression profiling. Am J Transplant. 2006;6:150–60.

  27. Crespo-Leiro MG, Stypmann J, Schulz U, et al. Clinical usefulness of gene-expression profile to rule out acute rejection after heart transplantation: CARGO II. Eur Heart J. 2016;37:2591–601.

  28. Pham MX, Teuteberg JJ, Kfoury AG, et al. Gene-expression profiling for rejection surveillance after cardiac transplantation. N Engl J Med. 2010;362:1890–900. https://doi.org/10.1056/NEJMoa0912965.

    Article  CAS  PubMed  Google Scholar 

  29. Kobashigawa J, Patel J, Azarbal B, et al. Randomized pilot trial of gene expression profiling versus heart biopsy in the first year after heart transplant: early invasive monitoring attenuation through gene expression trial. Circ Heart Fail. 2015;8:557–64.

  30. Costanzo MR, Dipchand A, Starling R, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29:914–56.

  31. Beck J, Oellerich M, Schulz U, et al. Donor-derived cell-free DNA is a Novel universal biomarker for allograft rejection in solid organ transplantation. Transplant Proc. 2015;47:2400–3.

  32. De Vlaminck I, Valantine HA, Snyder TM, et al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci Transl Med. 2014;6:241ra77.

    Article  Google Scholar 

  33. Hidestrand M, Tomita-Mitchell A, Hidestrand PM, et al. Highly sensitive noninvasive cardiac transplant rejection monitoring using targeted quantification of donor-specific cell-free deoxyribonucleic acid. J Am Coll Cardiol. 2014;63:1224–6.

  34. Grskovic M, Hiller DJ, Eubank LA, et al. Validation of a clinical-grade assay to measure donor-derived cell-free DNA in solid organ transplant recipients. J Mol Diagn. 2016;18:890–902.

    Article  CAS  Google Scholar 

  35. Bloom RD, Bromberg JS, Poggio ED, et al. Cell-free DNA and active rejection in kidney allografts. J Am Soc Nephrol. 2017;28:2221–32.

  36. Khush KK, Patel J, Pinney S, et al. Noninvasive detection of graft injury after heart transplant using donor-derived cell-free DNA: A prospective multicenter study. Am J Transplant. 2019;19:2889–99.

  37. Gurtan AM, Sharp PA. The role of miRNAs in regulating gene expression networks. J Mol Biol. 2013;425:3582–600.

    Article  CAS  Google Scholar 

  38. Duong Van Huyen JP, Tible M, Gay, et al. MicroRNAs as non-invasive biomarkers of heart transplant rejection. Eur Heart J. 2014;35:3194–202.

    Article  Google Scholar 

  39. Sukma Dewi I, Hollander Z, Lam KK, et al. Association of serum MiR-142-3p and MiR-101-3p levels with acute cellular rejection after heart transplantation. PLoS One. 2017;12:e0170842.

  40. Singh N, Heggermont W, Fieuws S, Vanhaecke J, Van Cleemput J, De Geest B. Endothelium-enriched microRNAs as diagnostic biomarkers for cardiac allograft vasculopathy. J Heart Lung Transplant. 2015;34:1376–84.

    Article  Google Scholar 

  41. Kowalski RJ, Post DR, Mannon RB, et al. Assessing relative risks of infection and rejection: a metaanalysis using an immune function assay. Transplantation. 2006;82:663–8.

  42. Kobashigawa JA, Kiyosaki KK, Patel JK, et al. Benefit of immune monitoring in heart transplant patients using ATP production in activated lymphocytes. J Heart Lung Transplant. 2010;29:504–8.

  43. Rossano JW, Denfield SW, Kim JJ, et al. Assessment of the Cylex ImmuKnow cell function assay in pediatric heart transplant patients. J Heart Lung Transplant. 2009;28:26–31.

  44. Wong MS, Boucek R, Kemna M, Rutledge J, Law Y. Immune cell function assay in pediatric heart transplant recipients. Pediatr Transplant. 2014;18:485–90.

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable being a review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jignesh K. Patel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Not applicable being a review Article.

Ethics committee approval and human and animal rights statement

Not applicable being a review Article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, J.K. Blood-based immunological monitoring after heart transplant. Current status and future prospects. Indian J Thorac Cardiovasc Surg 36 (Suppl 2), 194–199 (2020). https://doi.org/10.1007/s12055-020-00928-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12055-020-00928-x

Keywords

Navigation