Skip to main content
Log in

A note on the exponential diophantine equation \(\varvec{(a^{n}-1)(b^{n}-1)=x^{2}}\)

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

In 2002, Luca and Walsh (J. Number Theory 96 (2002) 152–173) solved the diophantine equation for all pairs (ab) such that \(2\le a<b\le 100\) with some exceptions. There are sixty nine exceptions. In this paper, we give some new results concerning the equation \((a^{n}-1)(b^{n}-1)=x^{2}\). It is also proved that this equation has no solutions if ab have opposite parity and \(n>4\) with 2|n. Here, the equation is also solved for the pairs \((a,b)=(2,50),(4,49),(12,45),(13,76),(20,77),(28,49),(45,100)\). Lastly, we show that when b is even, the equation \( (a^{n}-1)(b^{2n}a^{n}-1)=x^{2}\) has no solutions nx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennet M A and Skinner C M, Ternary diophantine equation via Galois representations and modular forms, Canad. J. Math. 56 (2004) 23–54

    Article  MathSciNet  Google Scholar 

  2. Cohn J H E, The diophantine equation \( (a^{n}-1)(b^{n}-1)=x^{2},\) Period. Math. Hungar. 44 (2002) 169–175

    Article  MathSciNet  Google Scholar 

  3. Damir M T, Faye B, Luca F and Tall A, Members of Lucas sequences whose Euler function is a power of 2, Fibonacci Quart. 52 (2014) 3–9

    MathSciNet  MATH  Google Scholar 

  4. Hajdu L and Szalay L, On the diophantine equations \( (2^{n}-1)(6^{n}-1)=x^{2}\) and \((a^{n}-1)(a^{kn}-1)=x^{2}\), Period. Math. Hungar. 40 (2000) 141–145

    Article  MathSciNet  Google Scholar 

  5. Ishii K, On the exponential diophantine equation \( (a^{n}-1)(b^{n}-1)=x^{2},\) Pub. Math. Debrecen 89 (2016) 253–256

    Article  Google Scholar 

  6. Keskin R and Şiar Z, Positive integer solutions of some diophantine equations in terms of integer sequences, Afr. Mat. 30 (2019) 181–184

    Article  MathSciNet  Google Scholar 

  7. Lan L and Szalay L, On the exponential diophantine equation \( (a^{n}-1)(b^{n}-1)=x^{2}\), Publ. Math. Debrecen 77 (2010) 1–6

    MathSciNet  MATH  Google Scholar 

  8. Le M H, A note on the exponential diophantine equation \( (2^{n}-1)(b^{n}-1)=x^{2}\), Publ. Math. Debrecen 74 (2009) 401–403

    MathSciNet  MATH  Google Scholar 

  9. Li Z-J and Tang M, A remark on a paper of Luca and Walsh, Integers 11 (2011) A40, 6 pp.

  10. Luca F, Walsh P G, The product of like-indexed terms in binary recurrences, J. Number Theory 96 (2002) 152–173

    Article  MathSciNet  Google Scholar 

  11. Luca F, Effective Methods for Diophantine Equations, https://math.dartmouth.edu/archive/m105f12/public_html/lucaHungary1.pdf

  12. Ribenboim P, My Numbers, My Friends (2000) (New York: Springer-Verlag)

    MATH  Google Scholar 

  13. Szalay L, On the diophantine equations \((2^{n}-1)(3^{n}-1)\) \( =x^{2}\), Publ. Math. Debrecen 57 (2000) 1–9

    MathSciNet  MATH  Google Scholar 

  14. Şiar Z and Keskin R, Some new identities concerning generalized Fibonacci and Lucas numbers, Hacet. J. Math. Stat. 42 (2013) 211–222

    MathSciNet  MATH  Google Scholar 

  15. Tang M, A note on the exponential diophantine equation \((a^{m}-1)(b^{n}-1)=x^{2}\), J. Math. Research and Exposition 31(6) (2011) 1064–1066

    MathSciNet  MATH  Google Scholar 

  16. van der Waall R W, On the diophantine equation \( x^{2}+x+1=3y^{2},x^{3}-1=2y^{2}\) and \(x^{3}+1=2y^{2},\) Simon Stevin 46 (1972/73) 39–51

  17. Walker D T, On the diophantine equation \(mX^{2}-nY^{2}=\pm 1,\) Amer. Math. Montly 74 (1967) 504–513

    MATH  Google Scholar 

  18. Walsh P G, On diophantine equations of the form \((x^{n}-1)(y^{m}-1)=z^{2}\), Tatra Math. Publ. 20 (2000) 87–89

    MATH  Google Scholar 

  19. Xioyan G, A note on the diophantine equation \( (a^{n}-1)(b^{n}-1)=x^{2},\) Period. Math. Hungar. 66 (2013) 87–93

    Article  MathSciNet  Google Scholar 

  20. Yuan P and Zhang Z, On the diophantine equation \((a^{n}-1)(b^{n}-1)=x^{2},\) Publ. Math. Debrecen 80 (2012) 327–331

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refik Keskin.

Additional information

Communicating Editor: B Sury

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keskin, R. A note on the exponential diophantine equation \(\varvec{(a^{n}-1)(b^{n}-1)=x^{2}}\). Proc Math Sci 129, 69 (2019). https://doi.org/10.1007/s12044-019-0520-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-019-0520-x

Keywords

Mathematics Subject Classification

Navigation