Skip to main content
Log in

Structural evolutions of the mechanically alloyed Al70Cu20Fe10 powders

  • Published:
Pramana Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Elemental mixtures of Al, Cu, Fe powders with the nominal composition of Al70Cu20Fe10 were mechanically alloyed in a planetary ball mill for 80 h. Subsequent annealing of the as-milled powders were performed at 600–800°C temperature range for 4 h. Structural characteristics of the mechanically alloyed Al70Cu20Fe10 powders with the milling time and the heat treatment were investigated by X-ray diffraction (XRD), differential scanning calorimeter (DSC) and differential thermal analysis (DTA). Mechanical alloying of the Al70Cu20Fe10 did not result in the formation of icosahedral quasicrystalline phase (i-phase) and a long time milling resulted in the formation of β-Al(Cu,Fe) solid solution phase (β-phase). The i-phase was observed only for short-time milled powders after heat treatment above 600°C. The β-phase was one of the major phases in the Al70Cu20Fe10 alloy. The w-Al7Cu2Fe1 phase (w-phase) was obtained only after heat treatment of the short-time milled and unmilled samples. The present investigation indicated that a suitable technique to obtain a large amount of quasicrystalline powders is to use a combination of short-time milling and subsequent annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D Shechtman, I A Blech, D Gratias and J W Cahn, Phys. Rev. Lett. 53, 1951 (1984)

    Article  ADS  Google Scholar 

  2. A Inoue, W Watanabe, H M Kimura, F Takahashi, A Nagata and T Masumoto, Mater. Trans. JIM 33, 723 (1992)

    Google Scholar 

  3. A P Tsai, K Aoki, A Inoue and T Masumoto, J. Mater. Res. 8, 5 (1993)

    Article  ADS  Google Scholar 

  4. V I Fadeeva, A V Leonov and L N Khodina, Mater. Sci. Forum 397, 179 (1995)

    Google Scholar 

  5. N Asahi, Mater. Sci. Eng. A226, 67 (1997)

    Google Scholar 

  6. A I Salimon, A M Kursunsky, E V Shelekhov, T A Sviridova, S D Kaloshkin, V V Tcherdyntsev and Yu V Baldokhin, Acta Mater. 49, 1821 (2001)

    Article  Google Scholar 

  7. J S Benjamin, Met. Trans. 1, 2943 (1970)

    Google Scholar 

  8. C Suryanarayana, Prog. Mater. Sci. 46, 1 (2001)

    Article  Google Scholar 

  9. F Faudot, A Quivy, Y Calvayrac, D Gratias and M Harmelin, Mater. Sci. Eng. A133, 383 (1991)

    Google Scholar 

  10. P Barua, B S Murty, B K Mathur and V Srinivas, J. Appl. Phys. 91, 5353 (2002)

    Article  ADS  Google Scholar 

  11. J Eckert, L Schultz and K Urban, Acta Metall. Mater. 39, 1497 (1991)

    Article  Google Scholar 

  12. N Asahi, T Maki, S Matsumoto and T Sawai, Mater. Sci. Eng. A182, 841 (1994)

    Google Scholar 

  13. Y Calvayrac, A Quivy, M Bessiere, S Lefebvre, M Cornier-Quiquandon and D Gratias, J. Phys. Paris 51, 417 (1990)

    Google Scholar 

  14. P Barua, V Srinivas and B S Murty, Philos. Mag. A80, 1207 (2000)

    ADS  Google Scholar 

  15. B S Murty, R V Koteswara Rao and N K Mukhopadhyay, J. Non-Cryst. Solids 334–335, 48 (2004)

    Article  Google Scholar 

  16. S Yin, Z Xie, Q Bian, B He, Z Pan, Z Sun, Z Wei, L Qian and S Wei, J. Alloys Compounds 455, 314 (2008)

    Article  Google Scholar 

  17. X Yong, I T Chang and I P Jones, J. Alloys Compounds 387, 128 (2005)

    Article  Google Scholar 

  18. N K Mukhopadhyay, T P Yadav and O N Srivastava, Philos. Mag. A82, 2979 (2002)

    ADS  Google Scholar 

  19. N K Mukhopadhyay, T P Yadav and O N Srivastava, Philos. Mag. Lett. 83, 423 (2003)

    Article  ADS  Google Scholar 

  20. N K Mukhopadhyay, F Ali, V C Srivastava, T P Yadav, M Sakaliyska, K B Surreddi, S Scudino, V Uhlenwinkel and J Eckert, Philos. Mag. 91, 2482 (2011)

    Article  ADS  Google Scholar 

  21. A P Tsai, A Inoue and T Masumoto, Jpn. J. Appl. Phys. 26, L1505 (1987)

    Article  ADS  Google Scholar 

  22. A P Tsai, A Inoue and T Masumoto, J. Mater. Sci. Lett. 6, 1403 (1987)

    Article  Google Scholar 

  23. F Faudot, A Quivy, Y Calvayrac, D Gratias and M Harmelin, Mater. Sci. Eng. A133, 383 (1991)

    Google Scholar 

  24. P Scherrer, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. 26, 98 (1918)

    Google Scholar 

  25. A R Stokes and A J C Wilson, Proc. Phys. Soc. London 56, 174 (1944)

    Article  ADS  Google Scholar 

  26. R S Tiwari, T P Yadav, N K Mukhopadhyay, M A Shaz and O N Srivastava, Z. Kristallogr. 224, 26 (2009)

    Article  Google Scholar 

  27. T P Yadav, N K Mukhopadhyay, R S Tiwari and O N Srivastava, J. Phys.: Conf. Ser. 226, 01 (2010)

    Google Scholar 

  28. T P Yadav, N K Mukhopadhyay, R S Tiwari and O N Srivastava, Mater. Sci. Eng. A393, 366 (2005)

    Google Scholar 

  29. J R Proveti, C Larica and E C Passamani, J. Phys. D: Appl. Phys. 36, 798 (2003)

    Article  ADS  Google Scholar 

  30. JCPDS, International Centre for Diffraction Data, New York (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BARIŞ AVAR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

GÖĞEBAKAN, M., AVAR, B. Structural evolutions of the mechanically alloyed Al70Cu20Fe10 powders. Pramana - J Phys 77, 735–747 (2011). https://doi.org/10.1007/s12043-011-0091-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0091-6

Keywords.

PACS Nos

Navigation