Skip to main content
Log in

Sensitivity to initial conditions on the simulation of extratropical cyclone ‘Gong’ formed over North Atlantic

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Research highlights

  • Sensitivity of initial and boundary conditions (ICs) are studied for an extra-tropical cyclone (ETC, Gong (2013)) over North Atlantic Ocean using WRF model.

  • Movement (track) and synoptic feature of Gong have been evaluated with observations. WRF could simulate the characteristics throughout life cycle of Gong.

  • The model attained intense stage was well simulated.

  • Cyclogenesis and Q-Vector for Gong are sensitive to the ICs and model could simulate better with 48-h lead time.

Abstract

The role of initial conditions (ICs) in the simulation of severe winter storm ‘Gong’ formed over North Atlantic is studied. The life cycle of Gong started at 1800 UTC of 16–0600 UTC of 22 January, 2013, with CSLP of 972 hPa. The gusty wind (~33 ms−1) and torrential rainfall of ~90 mm d−1 recorded over several major cities of the Iberian peninsula. Five numerical experiments were performed with the WRF model by initializing at 0600 UTC of 16, 1800 UTC of 16, 0600 UTC of 17, 1800 UTC of 17, and 0600 UTC of 18 January, 2013. Our results suggest that significant differences are seen among the experiments, particularly with the ICs of 0600 UTC 17 January, 2013, which represent the quick movement of Gong with a slight underestimation of intensity. The experiment with IC 0600 UTC on 18 January, 2013 produced the best simulation as compared to the observations. The simulated track, intensity, wind flow, and rainfall were well agreeing with the observations. The 12-h average track errors were ranging from 95 to 332 km with 24-, 36-, 48-, 60-, and 72-h lead time. The Q-vectors of Gong with the WRF model with 24-h lead time produced minimum errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Acker J G and Leptoukh G 2007 Online analysis enhances use of NASA earth science data; Eos Trans. AGU 88 14–17.

    Google Scholar 

  • Bader J, Mesquita M D, Hodges K I, Keenlyside N, Østerhus S and Miles M 2011 A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes; Atmos. Res. 101 809–834.

    Article  Google Scholar 

  • Barredo J I 2010 No upward trend in normalised windstorm losses in Europe: 1970–2008; Nat. Hazards Earth Syst. Sci. 10 97–104.

    Article  Google Scholar 

  • Bengtsson L, Hodges K I and Keenlyside N 2009 Will extratropical storms intensify in a warmer climate; J. Clim. 22 2276–2301.

    Article  Google Scholar 

  • Betts A K 1986 A new convective adjustment scheme. Part I: Observational and theoretical basis; Quart. J. Roy. Meteorol. Soc. 112 677–691.

    Google Scholar 

  • Betts A K and Miller M J 1986 A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets; Quart. J. Roy. Meteorol. Soc. 112 693–709.

    Google Scholar 

  • Bhaskar Rao D V, Hari P D, Srinivas D and Anjaneyulu Y 2010 Role of vertical resolution in numerical models towards the intensification, structure and track of tropical cyclones; Mar. Geol. 33 338–355.

    Google Scholar 

  • Boutle I A, Belcher S E and Plant R S 2011 Moisture transport in midlatitude cyclones; Quart. J. Roy. Meteorol. Soc. 137 360–373.

    Article  Google Scholar 

  • Bretherton C S and Park S 2009 A new moist turbulence parameterization in the community atmosphere model; J. Clim. 22 3422–3448.

    Article  Google Scholar 

  • Browning K A 1997 The dry intrusion perspective of extra-tropical cyclone development; Meteorol. Appl. 4 317–324.

    Article  Google Scholar 

  • Charney J G 1947 The dynamics of long waves in a baroclinic westerly current; J. Meteorol. 4 136–162.

    Article  Google Scholar 

  • Chen F and Dudhia J 2001 Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity; Mon. Weather Rev. 129 569–585.

    Article  Google Scholar 

  • Chou M D and Suarez M J 1999 A solar radiation parameterization (CLIRAD-SW) for atmospheric studies; NASA Tech. Memo 10460 1–48.

    Google Scholar 

  • Clark P A and Gray S L 2018 Sting jets in extratropical cyclones: A review; Quart. J. Roy. Meteorol. Soc. 144 943–969.

    Article  Google Scholar 

  • Cohen J, Screen J A, Furtado J C, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J and Jones J 2014 Recent Arctic amplification and extreme mid-latitude weather; Nat. Geosci. 7 627–637.

    Article  Google Scholar 

  • Dalcher A and Kalnay E 1987 Error growth and predictability in operational ECMWF forecasts; Tell. Ser. A Dyn. Meteorol. Oceanogr. 39 474–491, https://doi.org/10.3402/tellusa.v39i5.11774

    Article  Google Scholar 

  • Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer D P and Bechtold P 2011 The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system; Quart. J. Roy. Meteorol. Soc. 137 553–597.

    Article  Google Scholar 

  • Donat M G, Leckebusch G C, Wild S and Ulbrich U 2011 Future changes in European winter storm losses and extreme wind speeds inferred from GCM and RCM multi-model simulations; Nat. Hazards Earth Sys Sci. 11 1351–1370.

    Article  Google Scholar 

  • Eady E T 1949 Long waves and cyclone waves; Tell. Ser. A Dyn. Meteorol. Oceanogr. 1 33–52.

    Article  Google Scholar 

  • Ferreira J A, Pradhan P K and Liberato M L R 2014 Impacts of extratropical cyclone Stephanie assessed by a high resolution model setting; In: Book of abstracts of International Conference Mathematics and Engineering in Marine and Earth Problems (MEME’2014), Aveiro University, pp. 92–97.

  • Ferreira J A, Liberato M L R and Ramos A M 2016 On the relationship between atmospheric water vapour transport and extra-tropical cyclones development; Phys. Chem. Earth, Parts. A/B/C 94 56–65.

    Article  Google Scholar 

  • Fink A H, Brücher T, Ermert V, Krüger A and Pinto J G 2009 The European storm Kyrill in January 2007: Synoptic evolution, meteorological impacts and some considerations with respect to climate change; Nat. Hazards Earth Syst. Sci. 9 405–423.

    Article  Google Scholar 

  • Fu S, Sun J and Sun J 2014 Accelerating two-stage explosive development of an extratropical cyclone over the northwestern Pacific Ocean: A piecewise potential vorticity diagnosis; Tell. Ser. A Dyn. Meteorol. Oceanogr. 66 23210, https://doi.org/10.3402/tellusa.v66.23210.

    Article  Google Scholar 

  • Hari Prasad D, Brahmananda Rao V, Ramakrishna S S V S, Paparao G, Nanaji Rao N and Ramesh Kumar P 2017 On the movement of tropical cyclone LEHAR; Earth Syst. Environ. 1 1–14.

    Google Scholar 

  • Hari Prasad D, Srinivas C V, Bhaskar Rao D V and Anjaneyulu Y 2011 Simulation of Indian monsoon extreme rainfall events during the decadal period of 2000–2009 using a high resolution mesoscale model; Adv. Geophys. 6 31–47.

    Google Scholar 

  • Haylock M R, Hofstra N, Klein Tank A M, Klok E J, Jones P D and New M 2008 A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006; J. Geophys. Res. Atmos. 113 D20119, https://doi.org/10.1029/2008jd010201.

    Article  Google Scholar 

  • Hewson T D and Neu U 2015 Cyclones, windstorms and the IMILAST project; Tellus, Ser. A Dyn. Meteorol. Oceanogr. 67 27128, https://doi.org/10.3402/tellusa.v67.27128.

    Article  Google Scholar 

  • Holton J R 2004 An introduction to dynamic meteorology; 4th edn, Int. Geophys. Ser. 88 Academic Press, San Diego.

  • Hong S Y and Lim J O J 2006 The WRF single-moment 6-class microphysics scheme (WSM6); J. Korean. Meteor. Soc. 42 129–151.

    Google Scholar 

  • Hoskins B J, Draghici I and Davies H C 1978 A new look at the ω-equation; Quart. J. Roy. Meteorol. Soc. 104 31–38.

    Article  Google Scholar 

  • IPMA, Janeiro de 2013 Boletim Climatológico Mensal–IPMA January 2013 Monthly Climatology Report; IPMA, Lisboa (in Portuguese).

  • Janjic Z I 1990 The step-mountain coordinate: Physical package; Mon. Weather Rev. 118 1429–1443.

    Article  Google Scholar 

  • Janjic Z I 1994 The step-mountain eta coordinate model: Further developments of the convection, viscous sub layer and turbulence closure schemes; Mon. Weather Rev. 122 927–945.

    Article  Google Scholar 

  • Janjic Z I 2000 Comments on ‘Development and evaluation of a convection scheme for use in climate models’; J. Atmos. Sci. 57 3686–3686.

    Article  Google Scholar 

  • Karremann M K, Liberato M L R, Ordóñez P and Pinto J G 2016 Characterization of synoptic conditions and cyclones associated with top ranking potential wind loss events over Iberia; Atmos. Sci. Lett. 17 354–361.

    Article  Google Scholar 

  • Krishnamurti T N, Biswas M K, Mackey B P, Ellingson R G and Ruscher P H 2011 Hurricane forecasts using a suite of large-scale models; Tellus A 63 727–745.

    Article  Google Scholar 

  • Leckebusch G C and Ulbrich U 2004 On the relationship between cyclones and extreme windstorm events over Europe under climate change; Global Planet. Change 44 181–193.

    Google Scholar 

  • Leith C 1978 Objective methods for weather prediction; Ann. Rev. Fluid Mech. 10 107–128.

    Article  Google Scholar 

  • Liberato M R L, Pinto J G, Trigo I F and Trigo R M 2011 Klaus – an exceptional winter storm over Northern Iberia and Southern France; Weather 66 330–334.

    Article  Google Scholar 

  • Liberato M L, Pinto J G, Trigo R M, Ludwig P, Ordóñez P, Yuen D and Trigo I F 2013 Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean. Nat. Hazards Earth Syst. Sci. 13 2239–2251.

    Article  Google Scholar 

  • Liberato M L R 2014 The 19 January 2013 windstorm over the North Atlantic: Large–scale dynamics and impacts on Iberia; Weather Clim. Extr. 5–6 16–28.

    Google Scholar 

  • Lorenz E 1982 Atmospheric predictability experiments with a large numerical model; Tellus 34 505–513.

    Article  Google Scholar 

  • Majewski D 1997 Operational regional prediction; Meteorol. Atmos. Phys. 63 89–104.

    Article  Google Scholar 

  • Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R and Visbeck M 2001 North Atlantic climate variability: Phenomena, impacts and mechanisms; Int. J. Climatol. 21 1863–1898, https://doi.org/10.1002/joc.693.

    Article  Google Scholar 

  • Martin J E and Otkin J A 2004 The rapid growth and decay of an extratropical cyclone over the central Pacific Ocean; Wea. Forecasting 19 358–376, https://doi.org/10.1175/1520-0434(2004)019%3c0358:TRGADO%3e2.0.CO;2.

    Article  Google Scholar 

  • Miranda P, João Chinita M, Cardoso R, Soares P, Viterbo P, Pinto P and Mendes M 2014 Dynamics of the Gong windstorm (Jan 2013) in the context of a 20-year high-resolution simulation of Iberian climate; EGU General Assembly Conference Abstracts 11868, https://ui.adsabs.harvard.edu/abs/2014EGUGA.1611868M.

  • Mlawer E J, Taubman S J, Brown P D, Iacono M J and Clough S A 1997 Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave; J. Geophys. Res. 102 663–682.

    Google Scholar 

  • Mohanty U C, Osuri K K, Routray A, Mohapatra M and Pattanayak S 2010 Simulation of Bay of Bengal Tropical Cyclones with WRF model: Impact of initial and boundary conditions; Mar. Geodesy 33 294–314, https://doi.org/10.1080/01490419.2010.518061.

    Article  Google Scholar 

  • Mullen S L and Baumhefner D P 1989 The impact of initial condition uncertainty on numerical simulations of large scale explosive cyclogenesis; Mon. Weather Rev. 117 2800–2821.

    Article  Google Scholar 

  • Neu U, Akperov M G, Bellenbaum N, Benestad R, Blender R, Caballero R, Cocozza A, Dacre H F, Feng Y, Fraedrich K and Grieger J 2013 IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms; Bull. Amer. Meteor. Soc. 94 529–547, https://doi.org/10.1175/BAMS-D-11-00154.1.

    Article  Google Scholar 

  • Oort A H 1971 The observed annual cycle in the meridional transport of atmospheric energy; J. Atmos. Sci. 28 325–339, https://doi.org/10.1175/1520-0469(1971)028%3c0325:TOACIT%3e2.0.CO;2.

    Article  Google Scholar 

  • Pinto J G, Zacharias S, Fink A H, Leckebusch G C and Ulbrich U 2009 Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO; Clim. Dyn. 32 711–737.

    Article  Google Scholar 

  • Powers J G, Klemp J B, Skamarock W C, Davis C A, Dudhia J, Gill D O, Coen J L, Gochis D J, Ahmadov R, Peckham S E and Grell G A 2017 The Weather Research and Forecasting (WRF) Model: Overview, system efforts, and future directions; Bull. Am. Meteor. Soc. 98 1717–1737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    Article  Google Scholar 

  • Pradhan P K, Liberato M L R, Ferreira J A, Dasamsetti S and Rao S V B 2018 Characteristics of different convective parameterization schemes on the simulation of intensity and track of severe extratropical cyclones over North Atlantic; Atmos. Res. 199 128–144, https://doi.org/10.1016/j.atmosres.2017.09.007.

    Article  Google Scholar 

  • Pradhan P K, Liberato M L R, Kumar V, Rao S V B, Ferreira J and Sinha T 2019 Simulation of mid-latitude winter storms over the North Atlantic Ocean: Impact of boundary layer parameterization schemes; Clim. Dyn. 53 6785–6814.

    Article  Google Scholar 

  • Raju A, Prashant K, Anant P, Ravi K K, Nagaraju C, Chowdary J S and Nagarjuna D 2019 Evaluation of upper tropospheric humidity in WRF model during Indian Summer Monsoon; Asia-Pacific J. Atmos. Sci. 55 1–14, https://doi.org/10.1007/s13143-018-0090-3.

    Article  Google Scholar 

  • Sanders F and Gyakum J R 1980 Synoptic-dynamic climatology of the ‘bomb’; Mon. Weather Rev. 108 1589–1606.

    Article  Google Scholar 

  • Schultz D M and Browning K A 2017 What is a sting jet; Weather 72 63–66.

    Article  Google Scholar 

  • Schwierz C, Köllner-Heck P, Zenklusen Mutter E, Bresch D N, Vidale P-L, Wild M and Schär C 2010 Modelling European winter wind storm losses in current and future climate; Clim. Change 101 485–514, https://doi.org/10.1007/s10584-009-9712-1.

    Article  Google Scholar 

  • Serrano A, García J, Mateos V L, Cancillo M L and Garrido J 1999 Monthly modes of variation of precipitation over the Iberian Peninsula; J. Climate 12 2894–2919.

    Article  Google Scholar 

  • Skamarock W C, Klemp J B, Dudhia J, Gill D O, Barker D M, Dudha M G, Huang X, Wang W and Powers J G 2008 A description of the advanced research WRF version 3; NCAR technical note NCAR/TN-475? STR, 113p, http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.

  • Shapiro M, Wernli H, Bao J W, Methven J, Zou X, Doyle J, Holt T, Donall-Grell E and Neiman P 1999 A planetary-scale to mesoscale perspective of the life cycles of extratropical cyclones: The bridge between theory and observations; In: The Life Cycles of Extratropical Cyclones (eds) Shapiro M A and Grønås S, Am. Meteor. Soc., Boston, MA, pp. 139–185, https://doi.org/10.1007/978-1-935704-09-6_14.

  • Srinivas D, Venkata B D, Hari P D and Satyanarayana G C 2016 Impact of GPS radio occultation data assimilation in the prediction of two Arabian Sea tropical cyclones; Int. J. Earth Atmos. Sci. 3 35–44.

    Google Scholar 

  • Swiss Re 2008 Natural catastrophes and man-made disasters in 2007: High losses in Europe; In: Sigma, Nr. 1/2008, Swiss Re Publishing: Zurich, https://www.swissre.com/institute/research/sigma-research/sigma-2008-01.html.

  • Trachte K, Bissolli P, Obregón A, Nitsche H, Parker D, Kennedy J, Kendon M, Trigo R, Barriopedro D, Ramos A, Sensoy S and Hovhannisyan D 2014 Intense flooding in central Europe in ‘State of the Climate in 2013; Bull. Am. Meteor. Soc. 95(7) S5–S49.

    Google Scholar 

  • Trenberth K E and Stepaniak D P 2003 Seamless pole ward atmospheric energy transports and implications for the Hadley circulation; J. Clim. 22 3706–3722.

    Article  Google Scholar 

  • Trigo I F 2006 Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: A comparison between ERA-40 and NCEP/NCAR reanalyses; Clim. Dyn. 26 127–143.

    Article  Google Scholar 

  • Ulbrich U, Leckebusch G C and Pinto J G 2009 Extra-tropical cyclones in the present and future climate: A review; Theor. Appl. Climatol. 96 117–131, https://doi.org/10.1007/s00704-008-0083-8.

    Article  Google Scholar 

  • Vaughan G, Methven J, Anderson D, Antonescu B, Baker L, Baker T P, Ballard S P, Bower K N, Brown P R A, Chagnon J and Choularton T W 2015 Cloud banding and winds in intense European cyclones: Results from the DIAMET project; Bull. Am. Meteor. Soc. 96 249–265, https://doi.org/10.1175/BAMS-D-13-00238.1.

    Article  Google Scholar 

  • van den Besselaar E J M, Haylock M R, Van der Schrier G and Klein Tank A M G 2011 A European daily high-resolution observational gridded data set of sea level pressure; J. Geophys. Res. 116 D11110, https://doi.org/10.1029/2010JD015468.

    Article  Google Scholar 

  • Wang X L, Zwiers F W, Swail V R and Feng Y 2009 Trends and variability of storminess in the Northeast Atlantic region, 1874–2007; Clim. Dyn. 33 1179–1195, https://doi.org/10.1007/s00382-008-0504-5.

    Article  Google Scholar 

  • Wernli H, Dirren S, Liniger M A and Zillig M 2002 Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999); Quart. J. Roy. Meteorol. Soc. 128 405–429.

    Article  Google Scholar 

  • Wernli H and Schwierz C 2006 Surface cyclones in the ERA40 data set (1958–2001). Part I: Novel identification method and global climatology; J. Atmos. Sci. 63 2486–2507.

    Article  Google Scholar 

  • Wiesmueller J L and Brady R H 1993 A Mid-Atlantic States rain event: A review and comparison of techniques for assessing vertical motion fields; Nat. Wea. Dig. 18 31–54.

    Google Scholar 

  • Yoshida A and Asuma Y 2004 Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific region; Mon. Weather Rev. 132 1121–1142.

    Article  Google Scholar 

  • Žagar N 2017 A global perspective of the limits of prediction skill of NWP models; Ser. A Dyn. Meteorol. Oceanogr. 69 1317573, https://doi.org/10.1080/16000870.2017.1317573.

    Article  Google Scholar 

Download references

Acknowledgements

P K Pradhan acknowledges the ISRO-RESPOND (No: ISRO/RES/2/397/18-19) project, Govt. of India for financial support. The Mesoscale and Microscale Divisions of NCAR are sincerely acknowledged for online access to the Advanced Research Weather Research and Forecasting (WRF-ARW) model. The authors gratefully acknowledge the NCEP for providing real-time FNL/GFS initial and boundary conditions. For model experiments validation being done using E-OBS, UNISYS, ERA-Interim reanalysis, TRMM 3b42, the mean sea level charts from UK Met Office, and satellite images from EUMETSAT are sincerely acknowledged. We thank the anonymous reviewers for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

PKP: Conceptualization, computation, analysis, visualization, draft preparation, and writing. HPD: Conceptualization, methodology adoption, analysis, draft writing, reviewing and editing. SD: Visualization, draft reviewing and editing. SVBR: Intellectual contribution, draft reviewing and editing and RG: Analysis, visualization, and draft editing.

Corresponding author

Correspondence to P K Pradhan.

Additional information

Communicated by Kavirajan Rajendran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, P.K., Dasari, H.P., Desamsetti, S. et al. Sensitivity to initial conditions on the simulation of extratropical cyclone ‘Gong’ formed over North Atlantic. J Earth Syst Sci 130, 46 (2021). https://doi.org/10.1007/s12040-020-01546-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01546-2

Keywords

Navigation