Skip to main content
Log in

Mapping magnetic lineaments and subsurface basement beneath parts of Lower Benue Trough (LBT), Nigeria: Insights from integrating gravity, magnetic and geologic data

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

In this study, we present the analysis of the aeromagnetic data of parts of the Lower Benue Trough. Lineament analysis of the aeromagnetic data demonstrated four tectonic trends of the basement terrain. The lineaments are in the northeast to southwest (NE–SW), east, northeast to west, southwest (ENE–WSW), north to south (N–S), and east, southeast to west, northwest (ESE–WNW) directions. The NE–SW and ENE–WSW are the most dominant whereas the N–S and ESE–WNW are the minor trends. The estimated magnetic basement using spectral analysis vary between 3.5 and 5 km and the shallow magnetic sources (depth to top of intrusions) vary between 0.24 and 1.2 km. The result of the basement estimation from the magnetic data is comparable with the previous results from other studies as well as with the basement depth estimated from the gravity data of part of the present study area are incorporated in the study. From the gravity data, we identified sub-basin around Makurdi and basement of the sedimentary basin (5 km) is estimated using GPSO algorithm and Oasis Montaj (Geosoft).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdelrahman E M, Abo-Ezz E R, Essa K S, El-Araby T M and Soliman K S 2007 A new least-squares minimization approach to depth and shape determination from magnetic data; Geophys. Prospect. 55 433–446.

    Article  Google Scholar 

  • Abdelrahman E M, Abo-Ezz E R and Essa K S 2012 Parametric inversion of residual magnetic anomalies due to simple geometric bodies; Explor. Geophys.  43 178–189.

    Article  Google Scholar 

  • Abdelrahman E M and Essa K S 2015 A new method for depth and shape determinations from magnetic data; Pure Appl. Geophys. 172 439–460.

    Article  Google Scholar 

  • Abo-Ezz E R and Essa K S 2016 A least-squares minimization approach for model parameters estimate by using a new magnetic formula; Pure Appl. Geophys. 173 1265–1278.

    Article  Google Scholar 

  • Adighije C 1981 A gravity interpretation of the Benue Trough, Nigeria; Tectonophys. 79 109–128.

    Article  Google Scholar 

  • Agagu O K and Adighije C I 1983 Tectonic and sedimentation framework of the lower Benue Trough, southeastern Nigeria; J. Afr. Earth Sci. 1(3–4) 267–274.

    Google Scholar 

  • Ajayi C O and Ajakaiye D E 1981 The origin and peculiarities of the Nigerian Benue Trough: Another look from recent gravity data obtained from middle Benue; Tectonophys.  80 285–303.

    Article  Google Scholar 

  • Akande O, Zentelli M and Reynolds P H 1989 Fluid inclusion and stable isotope studies of Pb–Zn–fluorite-barite mineralization in lower and middle Benue Trough, Nigeria; Mineral Deposit  24 183–191.

    Article  Google Scholar 

  • Ali M Y, Watts A B and Farid A 2014 Gravity anomalies of the United Arab Emirates: Implications for basement structures and infra-Cambrian salt distribution; GeoArab. 19(1) 85–112.

    Google Scholar 

  • Anudu G K, Stephenson R A and Macdonald D I M 2014 Using high-resolution aeromagnetic data to recognize and map intra-sedimentary volcanic rocks and geological structures across the cretaceous middle Benue Trough, Nigeria; J. Afr. Earth Sci.  99 625–636.

    Article  Google Scholar 

  • Benkhelil J 1982 Benue Trough and Benue chain; Geol. Mag. 119 155–168.

    Article  Google Scholar 

  • Benkhelil J 1988 Structure et evolution geodynamiquedu basin intracontinental de la Benoue (Nigeria); Bull. Centres Rech. Explor. Pro. Elf-Afquitaine 1207 29–128.

    Google Scholar 

  • Benkhelil J 1989 The origin and evolution of the Cretaceous Benue Trough (Nigeria); J. Afr. Earth Sci. 6 251–282.

    Article  Google Scholar 

  • Bhattacharyya B K 1965 Two dimensional harmonic analysis as a tool for magnetic interpretation; Geophysics  30 829–857.

    Article  Google Scholar 

  • Biswas A 2016 Interpretation of gravity and magnetic anomaly over thin sheet-type structure using very fast simulated annealing global optimization technique; Model. Earth Syst. Environ. 2(1) 30.

    Article  Google Scholar 

  • Biswas A and Acharya T 2016 A very fast simulated annealing method for inversion of magnetic anomaly over semi-infinite vertical rod-type structure; Model. Earth Syst. Environ. 2(4) 198.

    Article  Google Scholar 

  • Blakely R J 1995 Potential theory in gravity and magnetic applications; Cambridge University Press, UK, 63p.

    Book  Google Scholar 

  • Bott M H P 1960 The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins; Geophys. J. Roy. Astron. Soc. 3 63–67.

    Article  Google Scholar 

  • Chakravarthi V 1995 Gravity interpretation of non-outcropping sedimentary basins in which the density contrast decreases parabolically with depth; Pure Appl. Geophys. 145 327–335.

    Article  Google Scholar 

  • Chakravarthi V, Singh S B and Babu G A 2001 INVER2DBASE – A program to compute basement depths of density interfaces above which the density contrast varies with depth; Comput. Geosci27 1127–1133.

    Article  Google Scholar 

  • Chakravarthi V and Sundararajan N 2005 Gravity modelling of \(2^{1}/2\) sedimentary basins – a case of variable density contrast; Comput. Geosci31 820–827.

  • Cordell L and Grauch V J S 1985 Mapping basement magnetization zone from aeromagnetic data in the San Juan Basin, New Mexico; In: The utility of regional gravity and magnetic anomaly maps (eds) Hinze and William J, Soc. Explor. Geophys., Tulsa, Oklahoma, 181–197.

  • Cratchley C R and Jones G P 1965 An interpretation of the geology and gravity anomalies of the Benue Valley Nigeria; Oversea Geological Survey London.

  • de Castro D I, Bezerra F H R, Sousa M O I and Fuck R A 2012 Influence of Neoproterozoic tectonic fabric on the origin of the Potiguar Basin, northeastern Brazil and its links with West Africa based on gravity and magnetic data; J. Geodyn.  54 29–42.

    Article  Google Scholar 

  • Djomani Y H P, Nnange J M, Diament M, Ebinger C J and Fairhead J D 1995 Effective elastic thickness and crustal thickness variations in west central Africa inferred from gravity data; J. Geophys. Res. 100 22047–22070.

    Article  Google Scholar 

  • Dobrin M B and Savit C H 1988 Introduction to geophysical prospecting; McGraw-Hill, New York, 867p.

  • Eberhart R C and Kennedy J 1995 A new optimizer using particle swarm theory; Proceedings of the sixth international symposium on micro machine and human science, IEEE service center, Piscataway, NJ, Nagoya, Japan, pp. 39–43.

  • Eberhart R C and Shi Y 2001 Particle swarm optimization: Developments, applications and resources; Proceedings of congress on evolutionary computation, IEEE service center, Piscataway, NJ, Seoul, Korea.

  • Ekinci Y L, Ertekin C and Yiğitbaş E 2013 On the effectiveness of directional derivative based filters on gravity anomalies for edge approximation: Synthetic simulations and a case study from the Aegean Graben System (Western Anatolia, Turkey); J. Geophys. Eng. 10(3) 035005.

    Article  Google Scholar 

  • Ekinci Y L and Yiğitbaş E 2015 Interpretation of gravity anomalies to delineate some structural features of Biga and Gelibolu Peninsulas and their surroundings (north–west Turkey); Geodin. Acta 27(4) 300–319.

    Article  Google Scholar 

  • Ekinci Y L 2016 MATLAB-based algorithm to estimate depths of isolated thin dike-like sources using higher-order horizontal derivatives of magnetic anomalies; Springerplus  5 1384.

    Article  Google Scholar 

  • El-Kaliouby H M and Al-Garni M A 2009 Inversion of self-potential anomalies caused by 2D inclined sheets using neural networks; J. Geophys. Eng6 29–34.

    Article  Google Scholar 

  • Essa K S and Elhussein M 2017 A new approach for the interpretation of magnetic data by a 2D dipping dike; J. Appl. Geophys. 136 431–443.

    Article  Google Scholar 

  • Essa K S and Elhussein M 2018 PSO (Particle swarm optimization) for interpretation of magnetic anomalies caused by simple geometrical structures; Pure Appl. Geophys. 175(10) 3539–3553.

    Article  Google Scholar 

  • Garcia-Abdeslem J and Ness G E 1994 Inversion of the power spectrum from magnetic anomalies; Geophysics  59 391–401.

    Article  Google Scholar 

  • Guiraud R and Maurin J C 1992 Early Cretaceous rifts of western and central Africa; Tectonophys. 213 153–168.

    Article  Google Scholar 

  • Jamian J J, Abdullah M N, Mokhlis H, Mustafa M W and Bakar A H A 2014 Global particle swarm optimization for high dimension numerical functions analysis; J. Appl. Math. 329193 1–14.

    Article  Google Scholar 

  • Jorgensen G J and Bosworth W 1989 Gravity modeling in the Central African Rift System, Sudan: Rift geometries and tectonic significance; J. Afr. Earth Sci.  8 283–306.

    Article  Google Scholar 

  • Kennedy J and Eberhart R 1995 Particle swarm optimization; IEEE Int. Conf. Neural. Netw. 4 1942–1948.

    Google Scholar 

  • Khalil A, Abdel Hafeez T H, Saleh H S and Mohamed W H 2016 Inferring the subsurface basement depth and the structural trends as deduced from aeromagnetic data at West Beni Suef area, Western Desert, Egypt; NRIAG J. Astro. Geophys.  5(2) 380–392.

    Article  Google Scholar 

  • King L C 1950 Outline and disruption of Gondwanaland; Geol. Mag. 87 353–359.

    Article  Google Scholar 

  • Maluski H, Coulon C, Popoff M and Baudin P 1995 \({}^{40}{{\rm Ar/}}^{39}{{\rm Ar}}\) chronology, petrology and geodynamic setting of Mesozoic to early Cenozoic magmatism from the Benue Trough, Nigeria; J. Geol. Soc. London  152 311–326.

  • Maurin J C, Benkhelil J and Robineau B 1986 Fault rocks of the Kaltungo lineament, NE Nigeria and their relationship with Benue Trough tectonics; J. Geol. Soc. London 143 587–599.

    Article  Google Scholar 

  • Maurizio F, Tatina Q and Angelo S 1998 Exploration of a lignite bearing in northern Ireland, using ground magnetic; Geophysics 62 1143–1150.

    Google Scholar 

  • MMSD (Ministry of Mines and Steel Development) 2010 Barites: Exploration opportunities in Nigeria; Nigerian Geological Survey Agency, Abuja, 12p.

  • Moreau C, Reynoult J M, Deruelle B and Robineau B 1987 A new tectonic model for the Cameroon Line, Central Africa; Tectonophys.  139 317–334.

    Article  Google Scholar 

  • Nabighian M N 1972 The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation; Geophysics 37(3) 507–517.

    Article  Google Scholar 

  • NGSA (Nigerian Geological Survey Agency) 2009 Geological and mineral resource map of Nigeria; Authority of the Federal Republic of Nigeria.

  • Nwachukwu S O 1972 The tectonic evolution of the southern portion of the Benue Trough, Nigeria; Geol. Mag. 109 411–419.

    Article  Google Scholar 

  • Ofoegbu C O 1984 Interpretation of aeromagnetic anomalies over Lower and Middle Benue Trough of Nigeria; Geophys. J. Roy. Astron. Soc. 79 813–823.

    Article  Google Scholar 

  • Ofoegbu C O 1985 Interpretation of an aeromagnetic profile across the Benue Trough of Nigeria; J. Afr. Earth Sci. 3(3) 293–296.

    Google Scholar 

  • Ofoegbu C O and Onuoha K M 1991 Analysis of magnetic data over the Abakaliki anticlinorium of the Lower Benue Trough, Nigeria; Mar. Petrol. Geol.  8 174–183.

    Article  Google Scholar 

  • Oha I A, Onuoha K M, Nwegbu A N and Abba A U 2016 Interpretation of high resolution aeromagnetic data over southern Benue Trough, southeastern Nigeria; J. Earth Syst. Sci.  125 369–385.

    Article  Google Scholar 

  • Olade M A 1978 Early Cretaceous basalt volcanism and initial continental rifting in Benue Trough, Nigeria; Natur. Intern. J. Sci. 273 458–559.

    Google Scholar 

  • Pallero J L G, Fernandez-Martinez J L, Bonvalot S and Fudym O 2015 Gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization; J. Appl. Geophys116 180–191.

    Article  Google Scholar 

  • Phillips J D 1998 Processing and interpretation of aeromagnetic data from Santa Cruz Basin–Patahonia mountains area, south-central Arizona; US Geological Survey Open File Report, pp. 2–98.

  • Rao C V, Chakravarthi V and Raju M L 1993 Parabolic density function in sedimentary basin modelling; Pure Appl. Geophys. 140(3) 493–501.

    Article  Google Scholar 

  • Rao C V, Pramanik A G, Kumar G V R K and Raju M L 1994 Gravity interpretation of sedimentary basins with hyperbolic density contrast; Geophys. Prospect. 42 825–839.

    Article  Google Scholar 

  • Roest W R, Verhoef J and Pilkington M 1992 Magnetic interpretation using the 3D analytic signal; Geophysics 57 116–125.

    Article  Google Scholar 

  • Roshan R and Singh U K 2017 Inversion of residual gravity anomalies using tuned PSO; Geosci. Instrum. Method. Data Syst. 6 71–79.

    Article  Google Scholar 

  • Rozimant K, Büyüksarac A and Bektaş Ö 2009 Interpretation of magnetic anomalies and estimation of depth of magnetic crust in Slovakia; Pure Appl. Geophys. 166 471–484.

    Article  Google Scholar 

  • Salem A, Williams S, Fairhead J D, Ravat D and Smith R 2007 Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives; Leading Edge  26 1502–1505.

    Article  Google Scholar 

  • Santos F A M 2010 Inversion of self-potential of idealized bodies’ anomalies using particle swarm optimization; Comput. Geosci36 1185–1190.

    Article  Google Scholar 

  • Singh A and Biswas A 2016 Application of global particle swarm optimization for inversion of residual gravity anomalies over geological bodies with idealized geometries; Natur. Resour. Res., https://doi.org/10.1007/s11053-015-9285-9.

  • Spector A and Grant F S 1970 Statistical model for interpreting aeromagnetic data; Geophysics  35 293–302.

    Article  Google Scholar 

  • Stoneley R 1966 The Niger delta region in the light of the theory of continental drift; Geol. Mag.  103 385–397.

    Article  Google Scholar 

  • Talwani M, Worzel J and Ladisman M 1959 Rapid gravity computations for two dimensional bodies with application to the Mendocino submarine fracture zone; J. Geophys. Res.  64(1) 49–59.

    Article  Google Scholar 

  • Telford W M, Geldart L P and Sheriff R E 1998 Applied geophysics; Springer, Berlin, 770p.

  • Uzuakpunwa A B 1974 The Abakaliki pyroclastics, eastern Nigeria: New age and tectonic implication; Geol. Mag. 111 65–70.

    Article  Google Scholar 

  • Verduzco B, Fairhead J D, Green C M and Mackenzie C 2004 New insights into magnetic derivatives for structural mapping; Leading Edge  23 116–119.

    Article  Google Scholar 

  • Wright J B 1968 South Atlantic continental drift and the Benue Trough; Tectonophys. 6 301–310.

    Article  Google Scholar 

Download references

Acknowledgements

The first author wishes to acknowledge the Tertiary Education Trust Fund (TET Fund), Nigeria through Modibbo Adama University of Technology, Yola (Nigeria) for financial support of his PhD research. The data to this research was arranged through the Nigerian Geological Survey Agency (NGSA), Abuja office, Nigeria. We are indebted to Dr Arkoprovo Biswas, the associate editor and the two anonymous reviewers for the constructive comments and suggestions on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukaila Abdullahi.

Additional information

Corresponding editor: Arkoprovo Biswas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullahi, M., Singh, U.K. & Roshan, R. Mapping magnetic lineaments and subsurface basement beneath parts of Lower Benue Trough (LBT), Nigeria: Insights from integrating gravity, magnetic and geologic data. J Earth Syst Sci 128, 17 (2019). https://doi.org/10.1007/s12040-018-1038-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-1038-9

Keywords

Navigation