Skip to main content
Log in

Generalised extreme value model with cyclic covariate structure for analysis of non-stationary hydrometeorological extremes

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Studies carried out recently on hydrometeorological extremes report the evidence of non-stationarity induced by potential long-term climatic fluctuations and anthropogenic factors. A critical examination of the stationarity assumption has been carried out and a non-stationary generalised extreme value model with cyclic covariate structure for modelling magnitude and variation of data series with some degrees of correlation for real-world applications is proposed. Interestingly, the sinusoidal function with periodicity around 30 yr has been derived as a suitable covariate structure to deal with the ambiguous nature of temporal trends and this could possibly be linked to ‘Sun cycles’. It has adequately explained the cyclic patterns recognised in the annual rainfall which are helpful for realistic estimation of quantiles. Various diagnostic plots and statistics support the usefulness of the proposed covariate structure to tackle potential non-stationarities in the data characterising extreme events in various fields such as hydrology, environment, finance, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agilan V and Umamahesh N V 2015 Detection and attribution of non-stationarity in intensity and frequency of daily and 4-h extreme rainfall of Hyderabad, India; J. Hydrol. 530 677–697.

    Article  Google Scholar 

  • Akaike H 1974 A new look at the statistical model identification; IEEE Trans. Autom. Control 19 716–723.

    Article  Google Scholar 

  • Brath A, Castellarin A and Montanari A 1999 Detecting non-stationarity in extreme rainfall data observed in Northern Italy; In: Proceedings of EGS – Plinius conference on Mediterranean storms, Maratea, pp. 219–231.

  • Brillinger D R 2001 Time series: Data analysis and theory; Society for Industrial and Applied Mathematics, Philadelphia, PA.

    Book  Google Scholar 

  • Chow V T, Maidment D R and Mays L W 1987 Applied hydrology (Civil Engineering Series), McGraw-Hill International editions.

  • Cohn T A and Lins H F 2005 Nature’s style: Naturally trendy; Geophys. Res. Lett. 32 L23402, https://doi.org/10.1029/2005GL024476.

    Article  Google Scholar 

  • Coles S 2001 An introduction to statistical modelling of extreme values; Springer, London.

    Book  Google Scholar 

  • Cox D R and Stuart A 1955 Some quick sign tests for trend in location and dispersion; Biometrika 42 80–95.

    Article  Google Scholar 

  • Cramer H 1946 Mathematical methods of statistics; Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  • El Adlouni S, Ouarda T B M J, Zhang X, Roy R and Bobee B 2007 Generalized maximum likelihood estimators for the non-stationary generalized extreme value model; Water Resour. Res. 43 W03410.

    Article  Google Scholar 

  • Fisher R and Tippet L 1928 Limiting forms of the frequency distribution of the largest or smallest member of a sample; Proc. Cambridge Philos. Soc. 24 180–190.

    Article  Google Scholar 

  • Goswami B N, Venugopal V, Sengupta D, Madhusoodanan M S and Prince K X 2006 Increasing trend of extreme rain events over India in a warming environment; Science 314 1442–1445.

    Article  Google Scholar 

  • Helsel D R and Hirsch R M 1993 Statistical methods in water resources; Elsevier, https://www.elsevier.com/HrBbooks/statistical-methods-in-water-resources/helsel/978-HrB0-444-88528-9.

  • Hurst H E 1951 Long-term storage capacity of reservoirs; Trans. Trans Am. Soc. Civil Eng. 116 770–808.

    Google Scholar 

  • Jagtap R S 2014 Effect of record length and recent past events on extreme precipitation analysis; Curr. Sci. 106(5) 698–707.

    Google Scholar 

  • Jagtap R S, Roy S K, Mathew F T and Pawar P K 2011 Entropy based assessment of rain gauge network in a river basin; J. Appl. Hydrol. 24(1&2) 74–85.

    Google Scholar 

  • Jain S and Lall U 2001 Floods in a changing climate: Does the past represent the future? Water Resour. Res. 37 3193–3205.

    Article  Google Scholar 

  • Jenkinson A F 1955 The frequency distribution of the annual maximum (or minimum) values of meteorological elements; Quart. J. Roy. Meteorol. Soc. 81 158–171.

    Article  Google Scholar 

  • Katz R W 2010 Statistics of extremes in climate change; Clim. Change 100 71–76, https://doi.org/10.1007/s10584-010-9834-5.

    Article  Google Scholar 

  • Kendall M G 1970 Rank correlation methods (4th edn), Charles Griffin, London.

    Google Scholar 

  • Klemes V 1974 The Hurst phenomenon: A puzzle? Water Resour. Res. 10(4) 675–688.

    Article  Google Scholar 

  • Koutsoyiannis D 2006 Non-stationarity vs. scaling in hydrology; J. Hydrol. 324(1–4) 239–254.

    Article  Google Scholar 

  • Koutsoyiannis D and Montanari A 2007 Statistical analysis of hydroclimatic time series: Uncertainty and insights; Water Resour. Res. 43 w05429.

    Article  Google Scholar 

  • Kunkel K E, Karl T R and Easterling D R 2007 A Monte Carlo assessment of uncertainties in heavy precipitation frequency variations; J. Hydrometeorol. 8 1152–1160.

    Article  Google Scholar 

  • Lins H F and Cohn T A 2001 Stationarity: Wanted dead or alive? J. Am. Water Res. Assoc. JAWRA 47(3).

  • Lopez J and Frances F 2013 Non-stationary flood frequency analysis in continental Spanish rivers using climate and reservoir indices as external covariates; Hydrol. Earth Syst. Sci. 17 3189–3203, https://doi.org/10.5194/hess-17-3189-2013.

    Article  Google Scholar 

  • Maidment D R 1993 Handbook of hydrology; McGraw-Hill Professional, New York.

    Google Scholar 

  • Mann H B 1945 Non-parametric tests against trend; Econometrica 13 245–259.

    Article  Google Scholar 

  • Matalas N C 1997 Stochastic hydrology in the context of climate change; Clim. Change 37 89–101.

    Article  Google Scholar 

  • Milly P C D, Betancourt J, Falkenmark M, Hirsch R M, Kundzewicz Z W, Lettenmaier D P and Stouffer R J 2008 Stationarity is dead: Whither water management? Science 319 573–574.

    Article  Google Scholar 

  • Mondal A and Mujumdar P P 2015 Modeling non-stationarity in intensity, duration and frequency of extreme rainfall over India; J. Hydrol. 521 217–231.

    Article  Google Scholar 

  • Pettitt A N 1979 A non-parametric approach to the change point problem; J. R. Stat. Soc. C Appl. Stat. 28 126–135.

    Google Scholar 

  • Pryor S C, Howe J A and Kunkel K E 2009 How spatially coherent and statistically robust are temporal changes in extreme precipitation in the contiguous USA? Int. J. Climatol. 29 31–45.

    Article  Google Scholar 

  • R Core Team 2015 R: A language and environment for statistical computing; R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/.

  • Rigby R A and Stasinopoulos D M 2005 Generalized additive models for location, scale and shape; J. R. Stat. Soc. Ser. C Appl. Stat. 54 507–554.

    Article  Google Scholar 

  • Roxy M K, Ghosh S, Amey P, Athulya R, Milind M, Raghu M, Pascal T and Rajeevan M 2017 A threefold rise in widespread extreme rain events over central India; Nat. Commun. 8 708, https://doi.org/10.1038/s41467-017-00744-9.

  • Serinaldi F and Kilsby C G 2015 Stationarity is undead: Uncertainty dominates the distribution of extremes; Adv. Water Res. 77 17–36.

    Article  Google Scholar 

  • Shashikantha K and Prashanthi M 2017 Modeling of extreme rainfall projections of Indian monsoon under climate change; Indian J. Sci. Res. 15(2) 15–19.

    Google Scholar 

  • Singh J, Vittal H, Singh T, Karmakar S and Ghosh S 2015 A framework for investigating the diagnostic trend in stationary and nonstationary flood frequency analyses under changing climate; J. Clim. Change 1(1–2) 47–65.

    Article  Google Scholar 

  • Singh J, Vittal H, Karmakar S, Ghosh S and Niyogi D 2016 Urbanization causes nonstationarity in Indian summer monsoon rainfall extremes; Geophys. Res. Lett. 43(21).

  • Smith R L 1985 Maximum likelihood estimation in a class of non-regular cases; Biometrika 72 67–90.

    Article  Google Scholar 

  • Villarini G, Serinaldi F, Smith J A and Krajewski W F 2009 On the stationarity of annual flood peaks in the continental United States during the 20th century; Water Resour. Res. 45 W08417, https://doi.org/10.1029/2008WR007645.

    Article  Google Scholar 

  • van Nooijen R R P and Kolechkina A G 2012 Estimates of extremes in the best of all possible worlds; In: 3rd STAHY international workshop on statistical methods for hydrology and water resources management, 1–2 October, Tunis, Tunisia.

  • Von Mises R 1954 The distribution of the greatest values of \(n\); American Math. Soc.: Providence RI II 271–294.

  • Wald A and Wolfowitz J 1943 An exact test for randomness in the non-parametric case based on serial correlation; Ann. Math. Stat. 14(4) 378–388.

    Article  Google Scholar 

Download references

Acknowledgements

Authors wish to thank the Director, CWPRS, Pune, for encouragement and continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R S Jagtap.

Additional information

Corresponding editor: Subimal Ghosh

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagtap, R.S., Gedam, V.K. & Kale, M.M. Generalised extreme value model with cyclic covariate structure for analysis of non-stationary hydrometeorological extremes. J Earth Syst Sci 128, 14 (2019). https://doi.org/10.1007/s12040-018-1033-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-1033-1

Keywords

Navigation