Skip to main content

Advertisement

Log in

Characterization of organic carbon in black shales of the Kachchh basin, Gujarat, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Thirty-three black shale samples from four locations on the onland Kachchh basin, western India were analyzed to characterize organic carbon (OC), thermal maturity and to determine the hydrocarbon potential of the basin. Upper Jurassic black shales from the Jhuran Formation (Dhonsa and Kodki areas) are characterized by the presence of chlorite, halloysite, high \(T_{\mathrm{max}}\), low OC, low hydrogen index and high oxygen index. These parameters indicate the OC as type IV kerogen, formed in a marine environment. The rocks attained thermal maturity possibly during Deccan volcanism. Early Eocene samples of the Naredi Formation (Naliya-Narayan Sarovar Road (NNSR) and the Matanomadh areas) are rich in TOC, smectite, chlorite and framboidal pyrite, but have low \(T_{\mathrm{max}}\). These indicate deposition of sediments in a reducing condition, probably in a lagoonal/marsh/swamp environment. Organic carbon of the Naredi Formation of NNSR may be considered as immature type III to IV kerogen, prone to generate coal. Core samples from the Naredi Formation of the Matanomadh area show two fold distribution in terms of kerogen. Organic carbon of the upper section is immature type III to IV kerogen, but the lower section has type II to III kerogen having potential to generate oil and gas after attaining appropriate thermal maturity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arora A, Banerjee S and Dutta S 2015 Black shale in late Jurassic Jhuran Formation of Kachchh: Possible indicator of oceanic anoxic event?; J. Geol. Soc. India 85 265–278, https://doi.org/10.1007/s12594-015-0215-6.

    Article  Google Scholar 

  • Arora A, Dutta S, Gogoi B and Banerjee S 2017 The effects of igneous dike intrusion on organic geochemistry of black shale and its implications: Late Jurassic Jhuran Formation, India; Int. J. Coal Geol. 178 84–99.

    Article  Google Scholar 

  • Banerjee A and Rao K L N 1993 Geochemical evaluation of part of the Cambay Basin, India; AAPG Bull. 77(1) 29–48.

    Google Scholar 

  • Banerjee S, Dutta S, Paikray S and Mann U 2006 Stratigraphy, sedimentology and bulk organic geochemistry of black shales from the Proterozoic Vindhyan Super group (central India); J. Earth Syst. Sci. 115(1) 37–47, https://doi.org/10.1007/BF02703024.

    Article  Google Scholar 

  • Besse J and V Courtillot 1988 Paleogeographic maps of the continents bordering the Indian ocean since the Early Jurassic; J. Geophys. Res. 93(B10) 11791–11808.

    Article  Google Scholar 

  • Bhaskar B 2013 Energy Security and Economic Development in India: A Holistic Approach; The Energy and Resource Institute, New Delhi, India, pp. 38–42.

    Google Scholar 

  • Biswas S K 1977 Mesozoic rock–stratigraphy of Kachchh; Quart. J. Geol. Min. Met. Soc. India 49 1–52, https://doi.org/10.17491/cgsi/2016/105405.

  • Biswas S K 1987 Regional tectonic framework, structure and evolution of western marginal basins of India; Tectonophys. 135 307–327, https://doi.org/10.1016/0040-1951(87)90115-6.

    Article  Google Scholar 

  • Biswas S K 1992 Tertiary Stratigraphy of Kachchh; J. Palaeontol. Soc. India 37 1–29.

    Google Scholar 

  • Biswas S K 2005 A review of structure and tectonics of Kachchh basin, western India, with special reference to earthquakes; Curr. Sci. 88(10) 1592–1600.

    Google Scholar 

  • Biswas S K 2016 Mesozoic and Tertiary stratigraphy of Kutch (Kachchh) – A review; Spec. Publ. Geol. Soc. India 6 1–24.

    Google Scholar 

  • Bourah A and Ganapathi S 2015 Organic richness and gas generation potential of Permian Barren Measures from Raniganj field, West Bengal, India, India; J. Earth Syst. Sci. 124(5) 1063–1074, https://doi.org/10.1007/s12040-015-0596-3.

    Article  Google Scholar 

  • Chandra K, Philip P C, Sridharan P, Chopra V S, Brahmaji Rao and Saha P K 1991 Petroleum source-rock potentials of the Cretaceous transgressive-regressive sedimentary sequences of the Cauvery Basin; J Southeast Asian Earth Sci. 5(1–4) 367–371, https://doi.org/10.1016/0743-9547(91)90050-8.

    Article  Google Scholar 

  • Cho H D 1992 Evidence for halloysite formation from weathering of ferruginous chlorite; Clay. Clay Miner. 40(5) 608–619.

    Article  Google Scholar 

  • Courtillot V, Gallet Y, Rocchia R, Feraud G, Robin E, Hofmann C, Bhandari N and Ghevariya Z G 2000 Cosmic markers, \({}^{40}\text{ Ar }/{}^{39}\text{ Ar }\) dating and palaeomagnetism of the KT section in the Anjar area of the Deccan large igneous province; Earth Planet. Sci. Lett. 182 137–156, https://doi.org/10.1016/S0012-821X(00)00238-7.

    Article  Google Scholar 

  • Desai G B, Satish P, Shukla R and Surve D 2008 Analysis of Ichnoguilds and their Significance in Interpreting Ichnological Events: A Study from Jhuran Formation (Upper Jurassic), Western Kachchh; J. Geol. Soc. India 72 458–466.

    Google Scholar 

  • Dembicki Jr H 1990 Mineral matrix effect during analytical pyrolysis of source rocks; Assoc. Pet. Geochem. Explor. 6 78–105.

    Google Scholar 

  • DGH 2017 Directorate General of Hydrocarbons website, India (Retrieved from: http://www.ndrdgh.gov.in).

  • Dutta S, Mathews R P, Singh B D, Tripathi S K M, Singh A, Saraswati P K, Banerjee S and Mann U 2011 Petrology, palynology and organic geochemistry of Eocene lignite of Matanomadh, Kachchh Basin, western India: Implications to depositional environment and hydrocarbon source potential; Int. J. Coal. Geol. 85 91–102, https://doi.org/10.1016/j.coal.2010.10.003.

    Article  Google Scholar 

  • Espitalié J, Madec M and Tissot B 1980 Role of mineral matrix in kerogen pyrolysis: Influence on petroleum generation and migration; AAPG Bull. 64 59–66.

  • Espitalié J, Senga M K and Trichet J 1984 Role of the mineral matrix during kerogen pyrolysis; Org. Geochem. 6 365–382, https://doi.org/10.1016/0146-6380(84)90059-7.

    Article  Google Scholar 

  • Espitalié J, Deroo G and Marquis F 1986 La pyrolyse Rock-Eval et ses applications Partie 3; Rev. del’Institut Francais du Pétrole. 41 73–89, https://doi.org/10.2516/ogst:1986003.

    Article  Google Scholar 

  • Harwood R J 1982 Oil and gas generation by laboratory pyrolysis of kerogen; In: Hydrocarbon Generation and source rock evaluation (Origin of Petroleum III) (eds) Cluff R M and Barrows M H, The AAPG Reprint Series 24 78–98.

  • Inoue A, Meunier A, Patrier-Mas P, Rigault C, Beaufort D and Vieillard P 2009 Application of chemical geothermometry to low-temperature trioctahedral chlorites; Clay. Clay Miner. 57(3) 371–382, https://doi.org/10.1346/CCMN.2009.0570309.

    Article  Google Scholar 

  • Kennedy M J, Pevear D R and Hill R J 2002 Mineral Surface Control of Organic Carbon in Black Shale; Science 295 657–660, https://doi.org/10.1126/science.1066611.

    Article  Google Scholar 

  • Klemme H D and Ulmishek G F 1991 Effective Petroleum Source Rocks of the World: Stratigraphic Distribution and Controlling Depositional Factors; AAPG Bull. 75 1809–1851.

    Google Scholar 

  • Lafargue E, Marquis F and Pillot D 1988 Rock-Eval 6 applications in hydrocarbon exploration, production and soil contamination studies; Juillet-Août IFP. 53(4) 421–437.

    Google Scholar 

  • Mani D, Dayal A M, Patil D J, Dayal A M, Kavita S, Hafiz M, Hakhoo N and Bhat G M 2014 Gas potential of Proterozoic and Phanerozoic shales from NW Himalaya, India: Inferences from pyrolysis; Int. J. Coal Geol. 128–129 81–95, https://doi.org/10.1016/j.coal.2014.04.007.

    Article  Google Scholar 

  • Mani D, Patil D J, Dayal A M and Prasad B N 2015 Thermal maturity, source rock potential and kinetics of hydrocarbon generation in Permian shales from the Damodar Valley basin, Eastern India; Mar. Pet. Geol. 66 1056–1072, https://doi.org/10.1016/j.marpetgeo.2015.08.019.

    Article  Google Scholar 

  • Mani D, Ratnam B, Kalpana M S, Patil D J and Dayal A M 2016 Elemental and organic geochemistry of Gondwana sediments from the Krishna–Godavari Basin, India, India; Chem. Erde 76(1) 117–131, https://doi.org/10.1016/j.chemer.2016.01.002.

    Article  Google Scholar 

  • Mani D, Kalpana M S, Patil D J and Dayal A M 2017 Organic matter in gas shales: Origin, evolution and characterization; In: Shale gas: Exploration and environmental and economic impacts (eds) Dayal A M and Mani D, Elsevier, pp. 25–52.

    Chapter  Google Scholar 

  • Manikyamba C, Kerrich R, González-Álvarez I, Mathur R and Khanna T C 2008 Geochemistry of Paleoproterozoic black shales from the Intracontinental Cuddapah basin, India: Implications for provenance, tectonic setting, and weathering intensity; Precamb. Res. 162 424–440, https://doi.org/10.1016/j.precamres.2007.10.003.

    Article  Google Scholar 

  • McCarthy K, Niemann M, Palmowski D, Peters K and Stankiewicz A 2011 Basic petroleum geochemistry for source rock evaluation; Oilfield Rev. 23(2) 32–43.

    Google Scholar 

  • Merh S S 1995 Geology of Gujarat; Geological Society of India, 222p.

  • Mishra S, Mani D, Kavitha S, Kalpana M S, Patil D J, Vyas D U and Dayal A M 2014 Organic matter characteristics and gas generation potential of the Tertiary shales from NW Kachchh, India; J. Pet. Sci. Eng. 124 114–121, https://doi.org/10.1016/j.petrol.2014.10.019.

    Article  Google Scholar 

  • Morino M, Malik J N, Mishra P, Bhuyan C and Kaneko F 2008 Active fault traces along Bhuj Fault and Katrol Hill Fault, and trenching survey at Wandhay, Kachchh, Gujarat, India, India; J. Earth Syst. Sci. 117(3) 181–188.

    Article  Google Scholar 

  • Muñez-Betelu L and Baceta J I 1994 Basics and Application of Rock-Eval/TOC Pyrolysis: An example from the uppermost Paleocene/lower most Eocene in the Basque Basin, Western Pyrenees; MUNIBE (Ciencias Naturales – Natur Zientziak) 46 43–62.

  • North F K 1985 Petroleum Geology; Allen & Unwin, USA, pp. 37–68.

  • Paikaray S, Banerjee S and Mukherji S 2008 Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Super group: Implications on provenance, tectonics and paleo-weathering; J. Asian Earth Sci. 32 34–48, https://doi.org/10.1016/j.jseaes.2007.10.002.

    Article  Google Scholar 

  • Papoulis D, Tsolis-Katagasi P, Kalampounias A G and Tsikouras B 2009 Progressive formation of halloysite from the hydrothermal alteration of biotite and the formation mechanisms of anatase in altered volcanic rocks from Limnos Island, northeast Aegean Sea, Greece, Greece; Clay. Clay Miner. 57(5) 566–577, https://doi.org/10.1346/CCMN.2009.0570505.

    Article  Google Scholar 

  • Patil D J, Mani D, Madhavi T, Sudarsan V, Srikarni S, Kalpana M S, Sreenivas B and Dayal A M 2013 Near Surface isotopic and geochemical studies for hydrocarbon prospecting in Mesozoic Kutch sedimentary basin, Gujarat, Western India; J. Pet. Sci. Eng . 108 393–403, https://doi.org/10.1016/j.petrol.2013.05.002.

    Article  Google Scholar 

  • Peters K E and Cassa M R 1994 Applied source rock geochemistry; In: The Petroleum System from Source to Trap (eds) Magoon L B and Dow W G, AAPG Mem. 60 93–120.

  • Rao G N 2001 Sedimentation, stratigraphy, and petroleum potential of Krishna–Godavari basin, East Coast of India; AAPG Bull. 85(9) 1623–1643.

    Google Scholar 

  • Sahay V K 2011 The hydrocarbon potential, thermal maturity, sequence stratigraphic setting and depositional palaeoenvironment of carbonaceous shale and lignite successions of Panandhro, north western Kachchh Basin, Gujarat, western India; Cent. Eur. J. Geosci. 3(1) 12–28, https://doi.org/10.2478/v10085-010-0032-5.

    Article  Google Scholar 

  • Selley R C 1998 Elements of Petroleum Geology; 2nd edn, Academic Press, pp. 191–205.

  • Sivan P, Datta G C and Singh R R 2008 Aromatic biomarkers as indicators of source, depositional environment, maturity and secondary migration in the oils of Cambay Basin, India; Org. Geochem. 39 1620–1630, https://doi.org/10.1016/j.orggeochem.2008.06.009.

    Article  Google Scholar 

  • Tewari A, Dutta S and Sarkar T 2016 Organic geochemical characterization and shale gas potential of the Permian Barren Measures Formation, West Bokaro sub-basin, Eastern India; J. Pet. Geol. 39(1) 49–60, https://doi.org/10.1111/jpg.12627.

    Article  Google Scholar 

  • Thakkar M G, Goyal B, Patidar A K, Maurya D M and Chamyal S 2006 Bedrock gorges in the central mainland Kachchh: Implications for landscape evolution; J. Earth Syst. Sci. 115(2) 249–256, https://doi.org/10.1007/BF02702039.

    Article  Google Scholar 

  • Tissot B and Welte D H 1984 Petroleum Formation and Occurrence; 2nd edn, Springer Verlag, Heidelberg, Germany, pp. 147–156.

    Book  Google Scholar 

  • Tourtelot H A 1979 Black Shale – Its deposition and diagenesis; Clay. Clay Miner. 27(5) 313–321.

    Article  Google Scholar 

  • Vidal O, Lanari P, Munoz M, Munoz M, Bourdelle F and de Andrade V 2016 Deciphering temperature, pressure and oxygen-activity conditions of chlorite formation; Clay Miner. 51 615–633, https://doi.org/10.1180/claymin.2016.051.4.06.

    Article  Google Scholar 

  • Weissert H 1981 Depositional processes in an ancient pelagic environment: The Lower Cretaceous Maiolica of the southern Alps; Eclogae Geol. Helv. 74 339–352.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Gaurav Chauhan (Bhuj University), D U Vyas (GM Geology) and Prhalad Singh Shaktawat (GMDC) for help in collection of samples. Hema Srivastava is thankful to the Central Research Facility of IIT(ISM) for analytical support. Authors are thankful to the anonymous reviewers for their constructive reviews and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajoy K Bhaumik.

Additional information

Corresponding editor: N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, H., Bhaumik, A.K., Tiwari, D. et al. Characterization of organic carbon in black shales of the Kachchh basin, Gujarat, India. J Earth Syst Sci 127, 93 (2018). https://doi.org/10.1007/s12040-018-1002-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-1002-8

Keywords

Navigation