Skip to main content
Log in

The dynamic behavior of the exohedral transition metal complexes of \(\mathrm{B}_{40}: {\upeta}^{6}\)- and \({\upeta}^{7}\)-\(\mathrm{B}_{40}\hbox {Cr(CO)}_{3}\) and \(\hbox {Cr(CO)}_{3}\)-\({\upeta}^{7}\)-\(\hbox {B}_{40}\) -\({\upeta}^{7}\)-\(\hbox {Cr(CO)}_{3}\)

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The dynamic nature of the exohedral \({\upeta}^{6}\)- and the \({\upeta}^{7}\)-complexes of \(\hbox {B}_{40}\) with \(\hbox {Cr(CO)}_{3}\) has been explored using density functional theory. The ab initio molecular dynamic simulations were performed at 1200 K to investigate the fluxionality of the heptagonal and hexagonal faces of exohedral \(\hbox {B}_{40}\) complexes. Our computations show that the coordination of the \(\hbox {B}_{40}\) faces with \(\hbox {Cr(CO)}_{3}\) fragment reduces its fluxionality to a limited extent. The activation barrier for the inter-conversion of the heptagonal and hexagonal rings in \(\hbox {(CO)}_{3}\hbox {Cr}({\upeta}^{6}\)-\(\hbox {B}_{40})\) complex is around 15.2 kcal/mol whereas in the \(\hbox {(CO)}_{3}\hbox {Cr}({\upeta}^{7}\)-\(\hbox {B}_{40})\) complex, it is slightly higher at around 19.7 kcal/mol. The coordination with another \(\hbox {Cr(CO)}_{3}\) fragment is found to be equally exergonic, with a barrier for interconversion of 21.5 kcal/mol. The HOMO-LUMO gap is almost similar as the mono-metallated complexes. The di-metallated complexes also show a dynamical behavior of the six and seven membered rings at 1200 K.

Graphical Abstract

SYNOPSIS The exohedral complexation of the seven membered rings of \(\hbox {B}_{40}\) with \(\hbox {Cr(CO)}_{3}\) increases the barrier height for interconversion of six to seven membered rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kroto H W, Heath J R, O’Brien S C, Curl R F and Smalley R E 1985 \(\text{C}_{60}\): Buckminsterfullerene Nature 318 162

    Article  CAS  Google Scholar 

  2. Serra S, Sanguinetti S and Colombo L 1994 Pre-fragmentation dynamics of C60. A molecular dynamics investigation Chem. Phys. Lett. 225 191

    Article  CAS  Google Scholar 

  3. Openov L A and Podlivaev A I 2006 Simulation of the thermal fragmentation of fullerene \(\text{C}_{60}\) JETP Lett. 84 68

    Article  CAS  Google Scholar 

  4. L H Green M and H H Stephens A 1997 Fluxional processes in organotransition-metal \(\text{C}_{60}\) complexes Chem. Commun. 793

  5. Zhai H-J, Zhao Y-F, Li W-L, Chen Q, Bai H, Hu H-S, Piazza Z A, Tian W-J, Lu H-G, Wu Y-B, Mu Y-W, Wei G-F, Liu Z-P, Li J, Li S-D and Wang L-S 2014 Observation of an all-boron fullerene Nat. Chem. 6 727

    CAS  Google Scholar 

  6. Chen Q, Li W-L, Zhao Y-F, Zhang S-Y, Hu H-S, Bai H, Li H-R, Tian W-J, Lu H-G, Zhai H-J, Li S-D, Li J and Wang L-S 2015 Experimental and Theoretical Evidence of an Axially Chiral Borospherene ACS Nano 9 754

    Article  Google Scholar 

  7. Chen Q, Zhang S-Y, Bai H, Tian W-J, Gao T, Li H-R, Miao C-Q, Mu Y-W, Lu H-G, Zhai H-J and Li S-D 2015 Cage-Like \(\text{B}_{41}^{+}\) and \(\text{B}_{42}^{2+}\): New Chiral Members of the Borospherene Family Angew. Chem., Int. Ed. 54 8160

    Article  CAS  Google Scholar 

  8. Lv J, Wang Y, Zhu L and Ma Y 2014 \(\text{B}_{38}\): an all-boron fullerene analogue Nanoscale 6 11692

  9. Tai T B and Nguyen M T 2016 A new chiral boron cluster B44 containing nonagonal holes Chem. Commun. 52 1653

    CAS  Google Scholar 

  10. Zhao J, Huang X, Shi R, Liu H, Su Y and King R B 2015 B28: The smallest all-boron cage from an ab initio global search Nanoscale 7 15086

  11. Li H-R, Jian T, Li W-L, Miao C-Q, Wang Y-J, Chen Q, Luo X-M, Wang K, Zhai H-J, Li S-D and Wang L-S 2016 Competition between quasi-planar and cage-like structures in the \(\text{B}_{29}^{-}\) cluster: Photoelectron spectroscopy and ab initio calculations Phys. Chem. Chem. Phys. 18 29147

    Article  CAS  Google Scholar 

  12. Tang H and Ismail-Beigi S 2007 Novel Precursors for Boron Nanotubes: The Competition of Two-Center and Three-Center Bonding in Boron Sheets Phys. Rev. Lett. 99 115501

    Article  Google Scholar 

  13. Wu X, Dai J, Zhao Y, Zhuo Z, Yang J and Zeng X C 2012 Two-Dimensional Boron Monolayer Sheets ACS Nano 6 7443

    CAS  Google Scholar 

  14. Galeev T R, Chen Q, Guo J-C, Bai H, Miao C-Q, Lu H-G, Sergeeva A P, Li S-D and Boldyrev A I 2011 Deciphering the mystery of hexagon holes in an all-boron graphene \(\alpha \)-sheet Phys. Chem. Chem. Phys. 13 11575

    Article  CAS  Google Scholar 

  15. Polad S and Ozay M 2013 A new hole density as a stability measure for boron fullerenes Phys. Chem. Chem. Phys. 15 19819

    Article  CAS  Google Scholar 

  16. Karmodak N and Jemmis E D 2016 Exohedral Complexation of \(\text{B}_{40}\), \(\text{C}_{60}\) and Arenes with Transition Metals: A Comparative DFT Study Chem. Asian J. 11 3350

    Article  CAS  Google Scholar 

  17. Karmodak N and Jemmis E D 2017 The Role of Holes in Borophenes: An Ab Initio Study of Their Structure and Stability with and without Metal Templates Angew. Chem., Int. Ed. doi:10.1002/anie.201610584

  18. Martínez-Guajardo G, Luis Cabellos J, Díaz-Celaya A, Pan S, Islas R, Chattaraj P K, Heine T and Merino G 2015 Dynamical behavior of Borospherene: A Nanobubble Sci. Rep. 5 11287

    Google Scholar 

  19. von E Doering W and Roth W R 1963 A rapidly reversible degenerate cope rearrangement: Bicyclo[5.1.0]octa-2,5-diene Tetrahedron 19 715

  20. Ault A 2001 The Bullvalene Story. The Conception of Bullvalene, a Molecule That Has No Permanent Structure J. Chem. Educ. 78 924

    Article  CAS  Google Scholar 

  21. Zimmerman H E and Grunewald G L 1966 The Chemistry of Barrelene. III. A Unique Photoisomerization to Semibullvalene J. Am. Chem. Soc. 88 183

    Article  CAS  Google Scholar 

  22. Sivaev I B, Bregadze V I and Stefan S 2002 Chemistry of closo-Dodecaborate Anion \([\text{B}_{12}\text{H}_{12}]^{2}\): A Review Collect Czech. Chem. Commun. 67 679

    CAS  Google Scholar 

  23. Liu L, Osorio E and Heine T 2016 Understanding the Central Location of a Hexagonal Hole in a B36 Cluster Chem. Asian J. 11 3220

    Article  CAS  Google Scholar 

  24. Bai H, Chen Q, Zhai H-J and Li S-D 2015 Endohedral and Exohedral Metalloborospherenes: \(\text{M}@\text{B}_{40}\) (M=Ca, Sr) and M&\(\text{B}_{40}\) (M=Be, Mg) Angew. Chem., Int. Ed. 54 941

    Article  CAS  Google Scholar 

  25. Dong H, Hou T, Lee S-T and Li Y 2015 New Ti-decorated \(\text{B}_{40}\) fullerene as a promising hydrogen storage material Sci. Rep. 5 9952

    CAS  Google Scholar 

  26. Jin P, Hou Q, Tang C and Chen Z 2015 Computational investigation on the endohedral borofullerenes M@\(\text{B}_{40}\) (M = Sc, Y, La) Theor. Chem. Acc. 134 1

    Article  Google Scholar 

  27. Shakerzadeh E, Biglari Z and Tahmasebi E 2016 M@\(\text{B}_{40}\) (M= Li, Na, K) serving as a potential promising novel NLO nanomaterial Chem. Phys. Lett. 654 76

    CAS  Google Scholar 

  28. Bai H, Bai B, Zhang L, Huang W, Mu Y-W, Zhai H-J and Li S-D 2016 Lithium-Decorated Borospherene \(\text{B}_{40}\): A Promising Hydrogen Storage Medium Sci. Rep. 6 35518

    CAS  Google Scholar 

  29. Adamo C and Barone V 1999 Toward reliable density functional methods without adjustable parameters: The PBE0 model J. Chem. Phys. 110 6158

    Article  CAS  Google Scholar 

  30. Weigend F and Ahlrichs R 2005 Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy Phys. Chem. Chem. Phys. 7 3297

    Article  CAS  Google Scholar 

  31. Schäfer A, Horn H and Ahlrichs R 1992 Fully optimized contracted Gaussian basis sets for atoms Li to Kr J. Chem. Phys. 97 2571

    Article  Google Scholar 

  32. Schäfer A, Huber C and Ahlrichs R 1994 Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr J. Chem. Phys. 100 5829

  33. Frisch M J et al. 2009 Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT

  34. Wolinski K, Hinton J F and Pulay P 1990 Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations J. Am. Chem. Soc. 112 8251

    Article  CAS  Google Scholar 

  35. Perdew J P, Burke K and Ernzerhof M 1996 Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  36. Kresse G and Furthmüller J 1996 Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 11169

    Article  CAS  Google Scholar 

  37. Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 59 1758

    Article  CAS  Google Scholar 

  38. Blöchl P E 1994 Projector augmented-wave method Phys. Rev. B 50 17953

    Article  Google Scholar 

  39. Kresse G, Furthmüller J and Hafner J 1995 Ab initio Force Constant Approach to Phonon Dispersion Relations of Diamond and Graphite Europhys. Lett. 32 729

    CAS  Google Scholar 

  40. Nosé S 1984 A unified formulation of the constant temperature molecular dynamics methods J. Chem. Phys. 81 511

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Inorganic and Physical chemistry department and Supercomputer Education and Research Centre for computational facilities, Council of Scientific and Industrial Research for a Senior Research Fellowship to NK and Department of Science and Technology for the J C Bose fellowship to EDJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eluvathingal D Jemmis.

Additional information

Dedicated to the memory of the late Professor Charusita Chakravarty.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmodak, N., Jemmis, E.D. The dynamic behavior of the exohedral transition metal complexes of \(\mathrm{B}_{40}: {\upeta}^{6}\)- and \({\upeta}^{7}\)-\(\mathrm{B}_{40}\hbox {Cr(CO)}_{3}\) and \(\hbox {Cr(CO)}_{3}\)-\({\upeta}^{7}\)-\(\hbox {B}_{40}\) -\({\upeta}^{7}\)-\(\hbox {Cr(CO)}_{3}\) . J Chem Sci 129, 1061–1067 (2017). https://doi.org/10.1007/s12039-017-1281-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1281-7

Keywords

Navigation