Skip to main content
Log in

Understanding the role of Beclin1 in mouse embryonic stem cell differentiation through CRISPR-Cas9-mediated gene editing

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Autophagy is a vacuolar pathway for the regulated degradation and recycling of cellular components. Beclin1, a Bcl2-interacting protein, is a well-studied autophagy regulator. Homozygous loss of Beclin1 in mice leads to early embryonic lethality. However, the role of Beclin1 in regulating the pluripotency of embryonic stem cells and their differentiation remains poorly explored. To study this, we generated Beclin1-Knockout (KO) mouse embryonic stem cells (mESCs) using the CRISPR-Cas9 genome-editing tool. Interestingly, Beclin1-KO mESCs did not show any change in the expression of pluripotency marker genes. Beclin1-KO mESCs also displayed active autophagy, suggesting the presence of Beclin1-independent autophagy in mESCs. However, loss of Beclin1 resulted in compromised differentiation of mESCs in vitro and in vivo due to misregulated expression of transcription factors. Our results suggest that Beclin1 may play an autophagy-independent role in regulating the differentiation of mESCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Arsov I, Adebayo A, Kucerova-Levisohn M, et al. 2011 A role for autophagic protein beclin 1 early in lymphocyte development. J. Immunol. 186 2201–2209

    Article  CAS  Google Scholar 

  • Carver EA, Jiang R, Lan Y, Oram KF and Gridley T 2001 The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol. Cell Biol. 21 8184–8188

    Article  CAS  Google Scholar 

  • Chu CT, Zhu J and Dagda R 2007 Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death. Autophagy 3 663–666

    Article  CAS  Google Scholar 

  • Cobaleda C, Perez-Caro M, Vicente-Duenas C and Sanchez-Garcia I 2007 Function of the zinc-finger transcription factor SNAI2 in cancer and development. Annu. Rev. Genet. 41 41–61

    Article  CAS  Google Scholar 

  • Evans MJ and Kaufman MH 1981 Establishment in culture of pluripotential cells from mouse embryos. Nature 292 154–156

    Article  CAS  Google Scholar 

  • Furuya N and YU J, Byfield M, Pattingre S and Levine B, 2005 The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1 46–52

    Article  CAS  Google Scholar 

  • Grishchuk Y, Ginet V, Truttmann AC, Clarke PG and Puyal J 2011 Beclin 1-independent autophagy contributes to apoptosis in cortical neurons. Autophagy 7 1115–1131

    Article  CAS  Google Scholar 

  • Kaur J and Debnath J 2015 Autophagy at the crossroads of catabolism and anabolism. Nat. Rev. Mol. Cell Biol. 16 461–472

    Article  CAS  Google Scholar 

  • Lin Y, Li XY, Willis AL, Liu C, Chen G and Weiss SJ 2014 Snail1-dependent control of embryonic stem cell pluripotency and lineage commitment. Nat. Commun. 5 3070

    Article  Google Scholar 

  • Matthew-Onabanjo AN, Janusis J, Mercado-Matos J, et al. 2020 Beclin 1 promotes endosome recruitment of hepatocyte growth factor tyrosine kinase substrate to suppress tumor proliferation. Cancer Res. 80 249–262

    Article  CAS  Google Scholar 

  • Mcknight NC and Zhenyu Y 2013 Beclin 1, an essential component and master regulator of PI3K-III in health and disease. Curr. Pathobiol. Rep. 1 231–238

    Article  Google Scholar 

  • Mizushima N and Levine B 2010 Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12 823–830

    Article  CAS  Google Scholar 

  • Noguchi S, Honda S, Saitoh T, Matsumura H, Nishimura E, Akira S and Shimizu S 2019 Beclin 1 regulates recycling endosome and is required for skin development in mice. Commun. Biol. 2 37

    Article  Google Scholar 

  • Pham CT, Macivor DM, Hug BA, Heusel JW and Ley TJ 1996 Long-range disruption of gene expression by a selectable marker cassette. Proc. Natl. Acad. Sci. USA 93 13090–13095

    Article  CAS  Google Scholar 

  • Plasschaert RN, Vigneau S, Tempera I, et al. 2014 CTCF binding site sequence differences are associated with unique regulatory and functional trends during embryonic stem cell differentiation. Nucleic Acids Res. 42 774–789

    Article  CAS  Google Scholar 

  • Qu X, Yu J, Bhagat G, et al. 2003 Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112 1809–1820

    Article  CAS  Google Scholar 

  • Rojas A, Schachterle W, Xu SM, Martín F and Black BL 2010 Direct transcriptional regulation of Gata4 during early endoderm specification is controlled by FoxA2 binding to an intronic enhancer. Dev. Biol. 346 346–355

    Article  CAS  Google Scholar 

  • Schrode N, Saiz N, Di Talia S and Hadjantonakis AK 2014 GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst. Dev. Cell 29 454–467

    Article  CAS  Google Scholar 

  • Stolz A, Ernst A and Dikic I 2014 Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16 495–501

    Article  CAS  Google Scholar 

  • Tsukamoto S and Yamamoto A 2013 The role of autophagy in early mammalian embryonic development. J. Mamm. Ova Res. 30 86–94

    Article  Google Scholar 

  • Valera A, Perales JC, Hatzoglou M and Bosch F 1994 Expression of the neomycin-resistance (neo) gene induces alterations in gene expression and metabolism. Hum. Gene Ther. 5 449–456

    Article  CAS  Google Scholar 

  • Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J and Levine B 2012 Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338 956–959

    Article  CAS  Google Scholar 

  • Watt AJ, Battle MA, Li J and Duncan SA 2004 GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc. Natl. Acad. Sci. USA 101 12573–12578

    Article  CAS  Google Scholar 

  • Xu F, Fang Y, Yan L, et al. 2017 Nuclear localization of Beclin 1 promotes radiation-induced DNA damage repair independent of autophagy. Sci. Rep. 7 45385

    Article  CAS  Google Scholar 

  • Yue Z, Jin S, Yang C, Levine AJ and Heintz N 2003 Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. USA 100 15077–15082

    Article  CAS  Google Scholar 

  • Yu L, Chen Y and Tooze SA 2018 Autophagy pathway: Cellular and molecular mechanisms. Autophagy 14 207–215

    Article  CAS  Google Scholar 

  • Zhang W, Chen F, Chen R, et al. 2019 Zscan4c activates endogenous retrovirus MERVL and cleavage embryo genes. Nucleic Acids Res. 47 8485–8501

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by funds to S.B.-M. from the Department of Science and Technology (DST) under the Woman Scientist A program (SR/WOSA/LS-15/2016(G)), funds to D.S. from the Wellcome Trust – Department of Biotechnology (DBT), India, Alliance (Intermediate Fellowship IA/I/12/1/500507), and funds to D.P. from the Department of Science and Technology (DST) (DST/INSPIRE/04/2017/001707). We thank the animal facility at National Centre for Cell Science (NCCS), Pune. We thank Dr. Avinash Pradhan, King Edward Memorial (K.E.M.) Hospital, Pune, for his guidance on the histopathological examination of the teratomas. We thank members of D.S.’s lab for their inputs during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Subramanyam.

Additional information

Corresponding editor: Kundan Sengupta

Corresponding editor: Kundan Sengupta

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bivalkar-Mehla, S., Puri, D., Singh, S.B. et al. Understanding the role of Beclin1 in mouse embryonic stem cell differentiation through CRISPR-Cas9-mediated gene editing. J Biosci 46, 18 (2021). https://doi.org/10.1007/s12038-021-00139-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-021-00139-5

Keywords

Navigation