Skip to main content

Advertisement

Log in

Meta-analysis of the Selected Genetic Variants in Immune-Related Genes and Multiple Sclerosis Risk

  • Review
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Previous studies have suggested that certain variants in immune-related genes may participate in the pathogenesis of multiple sclerosis (MS), including rs17824933 in the CD6 gene, rs1883832 in the CD40 gene, rs2300747 in the CD58 gene, rs763361 in the CD226 gene, rs16944 in the IL-1β gene, rs2243250 in the IL-4 gene, and rs12722489 and rs2104286 in the IL-2Rα gene. However, the results remained inconclusive and conflicting. In view of this, a comprehensive meta-analysis including all eligible studies was conducted to investigate the association between these 8 selected genetic variants and MS risk. Up to June 2023, 64 related studies were finally included in this meta-analysis. The odds ratios (ORs) and corresponding 95% confidence intervals (CIs) calculated by the random-effects model were used to evaluate the strength of association. Publication bias test, sensitivity analyses, and trial sequential analysis (TSA) were conducted to examine the reliability of statistical results. Our results indicated that rs17824933 in the CD6 gene, rs1883832 in the CD40 gene, rs2300747 in the CD58 gene, rs763361 in the CD226 gene, and rs12722489 and rs2104286 in the IL-2Rα gene may serve as the susceptible factors for MS pathogenesis, while rs16944 in the IL-1β gene and rs2243250 in the IL-4 gene may not be associated with MS risk. However, the present findings need to be confirmed and reinforced in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

This was a meta-analysis, so no new data sets were created. All the analyses were based on data extracted from previously published studies that have been cited in References.

References

  1. Marcus R (2022) What is multiple sclerosis? JAMA 328(20):2078. https://doi.org/10.1001/jama.2022.14236

    Article  PubMed  Google Scholar 

  2. King R (2020) Atlas of MS 3rd edition part 1: mapping multiple sclerosis around the world key epidemiology findings. Number of people with MS | Atlas of MS. www.atlasofms.org. Accessed 20 Sept 2023

  3. Mackay RP, Myrianthopoulos NC (1966) Multiple sclerosis in twins and their relatives. Arch Neurol 15(5):449–462. https://doi.org/10.1001/archneur.1966.00470170003001

    Article  CAS  PubMed  Google Scholar 

  4. Olsson T, Barcellos LF, Alfredsson L (2017) Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol 13(1):25–36. https://doi.org/10.1038/nrneurol.2016.187

    Article  CAS  PubMed  Google Scholar 

  5. International Multiple Sclerosis Genetics Consortium, Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ et al (2007) Risk alleles for multiple sclerosis identified by a genomewide study. New Engl J Med 357(9):851–862. https://doi.org/10.1056/NEJMoa073493

    Article  Google Scholar 

  6. Li Y, Singer NG, Whitbred J, Bowen MA, Fox DA, Lin F (2017) CD6 as a potential target for treating multiple sclerosis. Proc Natl Acad Sci U S A 114(10):2687–2692. https://doi.org/10.1073/pnas.1615253114

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jacobson EM, Concepcion E, Oashi T, Tomer Y (2005) A Graves’ disease-associated Kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology 146(6):2684–2691. https://doi.org/10.1210/en.2004-1617

    Article  CAS  PubMed  Google Scholar 

  8. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199(7):971–979. https://doi.org/10.1084/jem.20031579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shibuya K, Shirakawa J, Kameyama T, Honda S, Tahara-Hanaoka S, Miyamoto A et al (2003) CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J Exp Med 198(12):1829–1839. https://doi.org/10.1084/jem.20030958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shirakawa J, Shibuya K, Shibuya A (2005) Requirement of the serine at residue 329 for lipid raft recruitment of DNAM-1 (CD226). Int Immunol 17(3):217–223. https://doi.org/10.1093/intimm/dxh199

    Article  CAS  PubMed  Google Scholar 

  11. Lin CC, Edelson BT (2017) New insights into the role of IL-1β in experimental autoimmune encephalomyelitis and multiple sclerosis. J Immunol 198(12):4553–4560. https://doi.org/10.4049/jimmunol.1700263

    Article  CAS  PubMed  Google Scholar 

  12. Calabresi PA, Tranquill LR, McFarland HF, Cowan EP (1998) Cytokine gene expression in cells derived from CSF of multiple sclerosis patients. J Neuroimmunol 89(1–2):198–205. https://doi.org/10.1016/s0165-5728(98)00139-8

    Article  CAS  PubMed  Google Scholar 

  13. Russell SE, Moore AC, Fallon PG, Walsh PT (2012) Soluble IL-2Rα (sCD25) exacerbates autoimmunity and enhances the development of Th17 responses in mice. PLoS One 7(10):e47748. https://doi.org/10.1371/journal.pone.0047748

  14. Hudson TJ (2003) Wanted: regulatory SNPs. Nat Genet 33(4):439–440. https://doi.org/10.1038/ng0403-439

    Article  CAS  PubMed  Google Scholar 

  15. Lee YH (2015) Meta-analysis of genetic association studies. Ann Lab Med 35(3):283–287. https://doi.org/10.3343/alm.2015.35.3.283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188. https://doi.org/10.1016/0197-2456(86)90046-2

    Article  CAS  PubMed  Google Scholar 

  17. Lu XL, Liu MT, Liao YX, Huang C, Chai LL, Jin YC et al (2022) Meta-analysis of the association between mTORC1-related genes polymorphisms and cancer risk. Pathol Res Pract 229:9. https://doi.org/10.1016/j.prp.2021.153696

    Article  CAS  Google Scholar 

  18. Swaminathan B, Matesanz F, Cavanillas ML, Alloza I, Otaegui D, Olascoaga J et al (2010) Validation of the CD6 and TNFRSF1A loci as risk factors for multiple sclerosis in Spain. J Neuroimmunol 223(1–2):100–103. https://doi.org/10.1016/j.jneuroim.2010.03.020

    Article  CAS  PubMed  Google Scholar 

  19. International Multiple Sclerosis Genetics Consortium (2011) The genetic association of variants in CD6, TNFRSF1A and IRF8 to multiple sclerosis: a multicenter case-control study. PLoS One 6(4):e18813. https://doi.org/10.1371/journal.pone.0018813

  20. Wagner M, Bilinska M, Pokryszko-Dragan A, Sobczynski M, Cyrul M, Kusnierczyk P et al (2014) ALCAM and CD6- multiple sclerosis risk factors. J Neuroimmunol 276(1–2):98–103. https://doi.org/10.1016/j.jneuroim.2014.08.621

    Article  CAS  PubMed  Google Scholar 

  21. Bashinskaya VV, Kulakova OG, Kiselev IS, Baulina NM, Favorov AV, Boyko AN et al (2015) GWAS-identified multiple sclerosis risk loci involved in immune response: validation in Russians. J Neuroimmunol 282:85–91. https://doi.org/10.1016/j.jneuroim.2015.03.015

    Article  CAS  PubMed  Google Scholar 

  22. Kozin MS, Kulakova OG, Kiselev IS, Baulina NM, Boyko AN, Favorova OO (2020) Mitonuclear interactions influence multiple sclerosis risk. Gene 758:144962. https://doi.org/10.1016/j.gene.2020.144962

  23. Buck D, Kroner A, Rieckmann P, Mäurer M, Wiendl H (2006) Analysis of the C/T(-1) single nucleotide polymorphism in the CD40 gene in multiple sclerosis. Tissue Antigens 68(4):335–338. https://doi.org/10.1111/j.1399-0039.2006.00672.x

    Article  CAS  PubMed  Google Scholar 

  24. Blanco-Kelly F, Matesanz F, Alcina A, Teruel M, Diaz-Gallo LM, Gomez-Garcia M et al (2010) CD40: novel association with Crohn’s disease and replication in multiple sclerosis susceptibility. PLoS One 5(7):e11520. https://doi.org/10.1371/journal.pone.0011520

  25. Korobko DS, Malkova NA, Bulatova EV, Babenko LA, Sazonov DV, Sokolova EA et al (2013) The effect of genetic factors on the phenotypic expression of multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 113(2):10–16

    CAS  PubMed  Google Scholar 

  26. Sokolova EA, Malkova NA, Korobko DS, Rozhdestvenskii AS, Kakulya AV, Khanokh EV et al (2013) Association of SNPs of CD40 gene with multiple sclerosis in Russians. PLoS One 8(4):e61032. https://doi.org/10.1371/journal.pone.0061032

  27. Wagner M, Wisniewski A, Bilinska M, Pokryszko-Dragan A, Cyrul M, Kusnierczyk P et al (2014) Investigation of gene-gene interactions between CD40 and CD40L in Polish multiple sclerosis patients. Hum Immunol 75(8):796–801. https://doi.org/10.1016/j.humimm.2014.05.013

    Article  CAS  PubMed  Google Scholar 

  28. Field J, Shahijanian F, Schibeci S, Johnson L, Gresle M, Laverick L et al (2015) The MS risk allele of CD40 is associated with reduced cell-membrane bound expression in antigen presenting cells: implications for gene function. PLoS One 10(6):e0127080. https://doi.org/10.1371/journal.pone.0127080

  29. Al-Eitan L, Al Qudah M, Al Qawasmeh M (2020) Candidate gene association analysis of multiple sclerosis in the Jordanian Arab population: a case-control study. Gene 758:144959. https://doi.org/10.1016/j.gene.2020.144959

  30. Chorazy M, Wawrusiewicz-Kurylonek N, Adamska-Patruno E, Zajkowska O, Kapica-Topczewska K, Posmyk R et al (2020) Some common SNPs of the T-cell homeostasis-related genes are associated with multiple sclerosis, but not with the clinical manifestations of the disease, in the Polish population. J Immunol Res 2020:8838014. https://doi.org/10.1155/2020/8838014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. De Jager PL, Baecher-Allan C, Maier LM, Arthur AT, Ottoboni L, Barcellos L et al (2009) The role of the CD58 locus in multiple sclerosis. Proc Natl Acad Sci U S A 106(13):5264–5269. https://doi.org/10.1073/pnas.0813310106

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Pandit L, Ban M, Sawcer S, Singhal B, Nair S, Radhakrishnan K et al (2011) Evaluation of the established non-MHC multiple sclerosis loci in an Indian population. Mult Scler 17(2):139–143. https://doi.org/10.1177/1352458510384011

    Article  CAS  PubMed  Google Scholar 

  33. Qiu W, Kym P, James I, Nolan D, Castley A, Christiansen FT et al (2013) The influence of non-HLA gene polymorphisms and interactions on disease risk in a Western Australian multiple sclerosis cohort. J Neuroimmunol 261(1–2):92–97. https://doi.org/10.1016/j.jneuroim.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  34. D’Cunha MA, Pandit L, Malli C (2016) CD6 gene polymorphism rs17824933 is associated with multiple sclerosis in Indian population. Ann Indian Acad Neur 19(4):491–494. https://doi.org/10.4103/0972-2327.192384

    Article  Google Scholar 

  35. Ching YM, Viswanathan S, Mohamed Nor N, Shuib S, Kamarudin B, Mansor S et al (2019) Association of CD58 polymorphism and multiple sclerosis in Malaysia: a pilot study. Autoimmun Highlights 10(1):13. https://doi.org/10.1186/s13317-019-0123-7

    Article  CAS  Google Scholar 

  36. Timasheva YR, Nasibullin TR, Tuktarova IA, Erdman VV, Galiullin TR, Zaplakhova OV et al (2021) Genome-wide polygenic analysis of multiple sclerosis markers. Neurol Neuropsychiatry Psychosomatics 13(1S):31–38. https://doi.org/10.14412/2074-2711-2021-1s-31-38

    Article  Google Scholar 

  37. International Multiple Sclerosis Genetics Consortium (2009) The expanding genetic overlap between multiple sclerosis and type I diabetes. Genes Immun 10(1):11–14. https://doi.org/10.1038/gene.2008.83

    Article  CAS  Google Scholar 

  38. Wieczorek S, Hoffjan S, Chan A, Rey L, Harper L, Fricke H et al (2009) Novel association of the CD226 (DNAM-1) Gly307Ser polymorphism in Wegener’s granulomatosis and confirmation for multiple sclerosis in German patients. Genes Immun 10(6):591–595. https://doi.org/10.1038/gene.2009.44

    Article  CAS  PubMed  Google Scholar 

  39. Alcina A, Vandenbroeck K, Otaegui D, Saiz A, Gonzalez J, Fernandez O et al (2010) The autoimmune disease-associated KIF5A, CD226 and SH2B3 gene variants confer susceptibility for multiple sclerosis. Genes Immun 11(5):439–445. https://doi.org/10.1038/gene.2010.30

    Article  CAS  PubMed  Google Scholar 

  40. Liu C, Wang GS, Liu H, Li Y, Li J, Dai YQ et al (2012) CD226 Gly307Ser association with neuromyelitis optica in Southern Han Chinese. Can J Neurol Sci 39(4):488–490. https://doi.org/10.1017/s0317167100014001

    Article  PubMed  Google Scholar 

  41. Kim JY, Kim HJ, Cheong HS, Bae JS, Kim J-H, Park BL et al (2013) Lack of association between CD226 genetic variants and inflammatory demyelinating diseases in Korean population. Neuroendocrinol Lett 34(5):402–408

    CAS  PubMed  Google Scholar 

  42. Liu QB (2013) Screening of multiple sclerosis associated genes in the Han Chinese population and study of association between genetic variations in FCRL3 and multiple sclerosis. Dissertation: Fujian Medical University. https://doi.org/10.7666/d.D438153

  43. Ferri C, Sciacca FL, Grimaldi LE, Veglia F, Magnani G, Santuccio G et al (2000) Lack of association between IL-1A and IL-1B promoter polymorphisms and multiple sclerosis. J Neurol Neurosur Ps 69(4):564–565. https://doi.org/10.1136/jnnp.69.4.564

    Article  CAS  Google Scholar 

  44. Luomala M, Lehtimaki T, Elovaara I, Wang X, Ukkonen M, Mattila K et al (2001) A study of interleukin-1 cluster genes in susceptibility to and severity of multiple sclerosis. J Neurol Sci Off Bull World Fed Neurol 185(2):123–127. https://doi.org/10.1016/S0022-510X(01)00482-8

    Article  CAS  Google Scholar 

  45. Mann CL, Davies MB, Stevenson VL, Leary SM, Boggild MD, Ko Ko C et al (2002) Interleukin 1 genotypes in multiple sclerosis and relationship to disease severity. J Neuroimmunol 129(1–2):197–204. https://doi.org/10.1016/s0165-5728(02)00181-9

    Article  CAS  PubMed  Google Scholar 

  46. Hooper-van Veen T, Schrijver HM, Zwiers A, Crusius JB, Knol DL, Kalkers NF et al (2003) The interleukin-1 gene family in multiple sclerosis susceptibility and disease course. Mult Scler 9(6):535–539. https://doi.org/10.1191/1352458503ms974oa

    Article  CAS  PubMed  Google Scholar 

  47. Mustafina OE, Bakhtijarova KZ, Mikhailova AM, Tuktarova IA, Khusainova AN, Nasibullin TR et al (2008) Analysis of the association of allelic variants of apolypoprotein E and interleukin 1 beta genes with multiple sclerosis in ethnic Tatars. Russ J Genet 44(3):350–356. https://doi.org/10.1134/s1022795408030174

    Article  CAS  Google Scholar 

  48. Aggelakis K, Zacharaki F, Dardiotis E, Xiromerisiou G, Tsimourtou V, Ralli S et al (2010) Interleukin-1B and interleukin-1 receptor antagonist gene polymorphisms in Greek multiple sclerosis (MS) patients with bout-onset MS. Neurol Sci 31(3):253–257. https://doi.org/10.1007/s10072-009-0155-2

    Article  PubMed  Google Scholar 

  49. Borzani I, Tola MR, Caniatti L, Collins A, De Santis G, Luiselli D et al (2010) The interleukin-1 cluster gene region is associated with multiple sclerosis in an Italian Caucasian population. Eur J Neurol 17(7):930–938. https://doi.org/10.1111/j.1468-1331.2010.02952.x

    Article  CAS  PubMed  Google Scholar 

  50. Mirowska-Guzel D, Gromadzka G, Mach A, Czlonkowski A, Czlonkowska A (2011) Association of IL1A, IL1B, ILRN, IL6, IL10 and TNF-alpha polymorphisms with risk and clinical course of multiple sclerosis in a Polish population. J Neuroimmunol 236(1–2):87–92. https://doi.org/10.1016/j.jneuroim.2011.04.014

    Article  CAS  PubMed  Google Scholar 

  51. Heidary M, Rakhshi N, Kakhki MP, Behmanesh M, Sanati MH, Sanadgol N et al (2014) The analysis of correlation between IL-1B gene expression and genotyping in multiple sclerosis patients. J Neurol Sci 343(1–2):41–45. https://doi.org/10.1016/j.jns.2014.05.013

    Article  CAS  PubMed  Google Scholar 

  52. Khosravi A, Javan B, Tabatabaiefar MA, Ebadi H, Fathi D, Shahbazi M (2015) Association of interleukin-1 gene cluster polymorphisms and haplotypes with multiple sclerosis in an Iranian population. J Neuroimmunol 288:114–119. https://doi.org/10.1016/j.jneuroim.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  53. Al-Naseri MAS, Salman ED, Ad’hiah AH (2020) Relapsing-remitting multiple sclerosis: a profile of interleukine-1 gene cluster polymorphisms in Iraqi patients. J Neuroimmunol 346:577291. https://doi.org/10.1016/j.jneuroim.2020.577291

  54. Ferreira AM, Leal B, Ferreira I, Bras S, Moreira I, Samoes R et al (2021) Depression and anxiety in multiple sclerosis patients: the role of genetic variability of interleukin 1 beta. Mult Scler Relat Dis 52:102982. https://doi.org/10.1016/j.msard.2021.102982

  55. Kantarci OH, Schaefer-Klein JL, Hebrink DD, Achenbach SJ, Atkinson EJ, McMurray CT et al (2003) A population-based study of IL4 polymorphisms in multiple sclerosis. J Neuroimmunol 137(1–2):134–139. https://doi.org/10.1016/s0165-5728(03)00046-8

    Article  CAS  PubMed  Google Scholar 

  56. Akkad DA, Arning L, Ibrahim SM, Epplen JT (2007) Sex specifically associated promoter polymorphism in multiple sclerosis affects interleukin 4 expression levels. Genes Immun 8(8):703–706. https://doi.org/10.1038/sj.gene.6364429

    Article  CAS  PubMed  Google Scholar 

  57. Makarycheva OY, Tsareva EY, Sudomoina MA, Kulakova OG, Titov BV, Bykova OV et al (2011) Family analysis of linkage and association of HLA-DRB1, CTLA4, TGFB1, IL4, CCR5, RANTES, MMP9 and TIMP1 gene polymorphisms with multiple sclerosis. Acta Naturae 3(1):85–92. https://doi.org/10.32607/20758251-2011-3-1-85-92

    Article  PubMed  PubMed Central  Google Scholar 

  58. Arababadi MK, Mosavi R, Ravari A, Teimori H, Hassanshahi G (2012) Association of interleukin-4 polymorphisms with multiple sclerosis in southeastern Iranian patients. Ann Saudi Med 32(2):127–130. https://doi.org/10.5144/0256-4947.2012.127

    Article  PubMed  PubMed Central  Google Scholar 

  59. Popova EV, Kiselev IS, Boyko AN, Sivertseva SA, Malkova NA, Korobko DS et al (2017) Polymorphic variants of the immune response genes as risk factors for primary progressive multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 117(2. Vyp. 2):14–21. https://doi.org/10.17116/jnevro20171172214-21

  60. Kozin MS, Kulakova OG, Kiselev IS, Balanovsky OP, Boyko AN, Favorova OO (2018) Variants of mitochondrial genome and risk of multiple sclerosis development in Russians. Acta Naturae 10(4):79–86. https://doi.org/10.32607/20758251-2018-10-4-79-86

  61. Al-Naseri MAS, Salman ED, Ad’hiah AH (2019) Association between interleukin-4 and interleukin-10 single nucleotide polymorphisms and multiple sclerosis among Iraqi patients. Neurol Sci 40(11):2383–2389. https://doi.org/10.1007/s10072-019-04000-4

    Article  PubMed  Google Scholar 

  62. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL et al (2007) Risk alleles for multiple sclerosis identified by a genomewide study. New Engl J Med 357(9):851–862. https://doi.org/10.1056/NEJMoa073493

    Article  CAS  PubMed  Google Scholar 

  63. Rubio JP, Stankovich J, Field J, Tubridy N, Marriott M, Chapman C et al (2008) Replication of KIAA0350, IL2RA, RPL5 and CD58 as multiple sclerosis susceptibility genes in Australians. Genes Immun 9(7):624–630. https://doi.org/10.1038/gene.2008.59

    Article  CAS  PubMed  Google Scholar 

  64. Weber F, Fontaine B, Cournu-Rebeix I, Kroner A, Knop M, Lutz S et al (2008) IL2RA and IL7RA genes confer susceptibility for multiple sclerosis in two independent European populations. Genes Immun 9(3):259–263. https://doi.org/10.1038/gene.2008.14

    Article  CAS  PubMed  Google Scholar 

  65. Akkad DA, Hoffjan S, Petrasch-Parwez E, Beygo J, Gold R, Epplen JT (2009) Variation in the IL7RA and IL2RA genes in German multiple sclerosis patients. J Autoimmun 32(2):110–115. https://doi.org/10.1016/j.jaut.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  66. Alcina A, Fedetz M, Ndagire D, Fernandez O, Leyva L, Guerrero M et al (2009) IL2RA/CD25 gene polymorphisms: uneven association with multiple sclerosis (MS) and type 1 diabetes (T1D). PLoS One 4(1):e4137. https://doi.org/10.1371/journal.pone.0004137

  67. D’Netto MJ, Ward H, Morrison KM, Ramagopalan SV, Dyment DA, DeLuca GC et al (2009) Risk alleles for multiple sclerosis in multiplex families. Neurology 72(23):1984–1988. https://doi.org/10.1212/WNL.0b013e3181a92c25

    Article  CAS  PubMed  Google Scholar 

  68. Matiello M, Weinshenker BG, Atkinson EJ, Schaefer-Klein J, Kantarci OH (2011) Association of IL2RA polymorphisms with susceptibility to multiple sclerosis is not explained by missense mutations in IL2RA. Mult Scler 17(5):634–636. https://doi.org/10.1177/1352458510394703

    Article  PubMed  Google Scholar 

  69. Dai Y, Li J, Zhong X, Wang Y, Qiu W, Lu Z et al (2013) IL2RA allele increases risk of neuromyelitis optica in Southern Han Chinese Can. J Neurol Sci 40(6):832–835. https://doi.org/10.1017/s0317167100015973

    Article  Google Scholar 

  70. Schmied MC, Zehetmayer S, Reindl M, Ehling R, Bajer-Kornek B, Leutmezer F et al (2012) Replication study of multiple sclerosis (MS) susceptibility alleles and correlation of DNA-variants with disease features in a cohort of Austrian MS patients. Neurogenetics 13(2):181–187. https://doi.org/10.1007/s10048-012-0316-y

    Article  CAS  PubMed  Google Scholar 

  71. Xu GR (2013) The relationship between multiple sclerosis of China Southern Han race and polymorphism of IL-7RA and IL-2RA. Dissertation: Fujian Medical University. https://doi.org/10.7666/d.D577743

  72. Ainiding G, Kawano Y, Sato S, Isobe N, Matsushita T, Yoshimura S et al (2014) Interleukin 2 receptor alpha chain gene polymorphisms and risks of multiple sclerosis and neuromyelitis optica in southern Japanese. J Neurol Sci 337(1–2):147–150. https://doi.org/10.1016/j.jns.2013.11.037

    Article  CAS  PubMed  Google Scholar 

  73. Xia ZL, Qin QM, Zhao QY (2018) A genetic link between CXCR5 and IL2RA gene polymorphisms and susceptibility to multiple sclerosis. Neurol Res 40(12):1040–1047. https://doi.org/10.1080/01616412.2018.1517110

    Article  CAS  PubMed  Google Scholar 

  74. Ahmadi H, Yassaee VR, Mirfakhraie R, Hashemi-Gorji F (2020) Association between single nucleotide polymorphisms rs12722489 and multiple sclerosis in Iranian patients with multiple sclerosis. Curr J Neurol 19(1):26–31. https://doi.org/10.18502/ijnl.v19i1.3287

  75. Wang R, Yang HX, Zhou YL, Zhu XD, Jin MH, Fu J (2022) Association of genetic polymorphisms of molecules in JAK-STAT signaling pathway with susceptibility of multiple sclerosis. J Biol Regul Homeost Agents. 36(6):1789–1797. https://doi.org/10.23812/j.biol.regul.homeost.agents.20223606.189

    Article  CAS  Google Scholar 

  76. Bahlo M, Booth DR, Broadley SA, Brown MA, Foote SJ, Griffiths LR et al (2009) Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat Genet 41(7):824–884. https://doi.org/10.1038/ng.396

    Article  CAS  Google Scholar 

  77. Maier LM, Lowe CE, Cooper J, Downes K, Anderson DE, Severson C et al (2009) IL2RA genetic heterogeneity in multiple sclerosis and type 1 diabetes susceptibility and soluble interleukin-2 receptor production. PLoS Genet 5(1):e1000322. https://doi.org/10.1371/journal.pgen.1000322

  78. Cavanillas ML, Alcina A, Nunez C, de las Heras V, Fernandez-Arquero M, Bartolome M, et al (2010) Polymorphisms in the IL2, IL2RA and IL2RB genes in multiple sclerosis risk. Europ J Hum Genet 18(7):794–799. https://doi.org/10.1038/ejhg.2010.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mkhikian H, Grigorian A, Li CF, Chen H-L, Newton B, Zhou RW et al (2011) Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat Commun 2:334. https://doi.org/10.1038/ncomms1333

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Traboulsee AL, Bernales CQ, Ross JP, Lee JD, Sadovnick AD, Vilarino-Gueell C (2014) Genetic variants in IL2RA and IL7R affect multiple sclerosis disease risk and progression. Neurogenetics 15(3):165–169. https://doi.org/10.1007/s10048-014-0403-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stefanovic M, Zivotic I, Stojkovic L, Dincic E, Stankovic A, Zivkovic M (2020) The association of genetic variants IL2RA rs2104286, IFI30 rs11554159 and IKZF3 rs12946510 with multiple sclerosis onset and severity in patients from Serbia. J Neuroimmunol 347:577346. https://doi.org/10.1016/j.jneuroim.2020.577346

  82. Wang Z, Song X, Fang Q, Xia W, Luo A (2021) Polymorphism of IL-1β rs16944(T/C) Associated with serum levels of IL-1β and subsequent stimulation of extracellular matrix degradation affects intervertebral disk degeneration susceptibility. Ther Clin Risk Manag 17:453–461. https://doi.org/10.2147/tcrm.S308653

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rosenwasser LJ, Klemm DJ, Dresback JK, Inamura H, Mascali JJ, Klinnert M, et al. (1995) Promoter polymorphisms in the chromosome 5 gene cluster in asthma and atopy. Clin. Exp. Allergy.25 Suppl 2:74–78; discussion 95–76. https://doi.org/10.1111/j.1365-2222.1995.tb00428.x

  84. International Multiple Sclerosis Genetics Consortium (2019) Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365(6460):eaav7188. https://doi.org/10.1126/science.aav7188

  85. Zimmerman AW, Joosten B, Torensma R, Parnes JR, van Leeuwen FN, Figdor CG (2006) Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells. Blood 107(8):3212–3220. https://doi.org/10.1182/blood-2005-09-3881

    Article  CAS  PubMed  Google Scholar 

  86. Singer NG, Fox DA, Haqqi TM, Beretta L, Endres JS, Prohaska S et al (2002) CD6: expression during development, apoptosis and selection of human and mouse thymocytes. Int Immunol 14(6):585–597. https://doi.org/10.1093/intimm/dxf025

    Article  CAS  PubMed  Google Scholar 

  87. Bishop GA, Hostager BS (2003) The CD40-CD154 interaction in B cell-T cell liaisons. Cytokine Growth Factor Rev 14(3–4):297–309. https://doi.org/10.1016/s1359-6101(03)00024-8

    Article  CAS  PubMed  Google Scholar 

  88. Xiang YJ, Ren M, Jiang H, Yang TT, He Y, Ao DH et al (2016) Ex vivo expansion of antigen-specific CD4+CD25+ regulatory T cells from autologous naïve CD4+ T cells of multiple sclerosis patients as a potential therapeutic approach. Eur Rev Med Pharmacol Sci 20(24):5261–5270

    PubMed  Google Scholar 

  89. Haas J, Hug A, Viehöver A, Fritzsching B, Falk CS, Filser A et al (2005) Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol 35(11):3343–3352. https://doi.org/10.1002/eji.200526065

    Article  CAS  PubMed  Google Scholar 

  90. Davis SJ, van der Merwe PA (1996) The structure and ligand interactions of CD2: implications for T-cell function. Immunol Today 17(4):177–187. https://doi.org/10.1016/0167-5699(96)80617-7

    Article  CAS  PubMed  Google Scholar 

  91. Kumar P, Bhattacharya P, Prabhakar BS (2018) A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun 95:77–99. https://doi.org/10.1016/j.jaut.2018.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mattana TC, Santos AS, Fukui RT, Mainardi-Novo DT, Costa VS, Santos RF et al (2014) CD226 rs763361 is associated with the susceptibility to type 1 diabetes and greater frequency of GAD65 autoantibody in a Brazilian cohort. Mediators Inflamm 2014:694948. https://doi.org/10.1155/2014/694948

  93. Mendiola AS, Cardona AE (2018) The IL-1β phenomena in neuroinflammatory diseases. J Neural Transm 125(5):781–795. https://doi.org/10.1007/s00702-017-1732-9

    Article  CAS  PubMed  Google Scholar 

  94. Paul WE, Seder RA (1994) Lymphocyte responses and cytokines. Cell 76(2):241–251. https://doi.org/10.1016/0092-8674(94)90332-8

    Article  CAS  PubMed  Google Scholar 

  95. Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296(5567):490–494. https://doi.org/10.1126/science.296.5567.490

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Chistiakov DA, Voronova NV, Chistiakov PA (2008) The crucial role of IL-2/IL-2RA-mediated immune regulation in the pathogenesis of type 1 diabetes, an evidence coming from genetic and animal model studies. Immunol Lett 118(1):1–5. https://doi.org/10.1016/j.imlet.2008.03.002

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (WUT: 2020IB029).

Author information

Authors and Affiliations

Authors

Contributions

BC and JL designed and supervised the study. WZ, WH, JL, and ZY reviewed and collected the data of all eligible studies independently. WZ and LT analyzed the data. WH and XM checked the statistical results. WZ and WH wrote the manuscript. BC, JL, and MQ revised the manuscript critically and made the final approval of the manuscript. All authors reviewed the manuscript and approved the final manuscript.

Corresponding authors

Correspondence to Bifeng Chen or Jing Li.

Ethics declarations

Ethics Approval

Ethic approval was not required for the current study.

Consent to Participate

No consent to participate was required for the current study.

Consent for Publication

No consent for publication was required for the current study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Hu, W., Tang, L. et al. Meta-analysis of the Selected Genetic Variants in Immune-Related Genes and Multiple Sclerosis Risk. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04095-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04095-7

Keywords

Navigation