Skip to main content
Log in

Transcriptomics and Metabolomics Unveil the Neuroprotection Mechanism of AnGong NiuHuang (AGNH) Pill Against Ischaemic Stroke Injury

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

As a famous prescription in China, AnGong NiuHuang (AGNH) pill exerts good neuroprotection for ischaemic stroke (IS), but its mechanism is still unclear. In this study, the neuroprotection of AGNH was evaluated in the rat IS model which were established with the surgery of middle cerebral artery occlusion (MCAO), and the potential mechanism was elucidated by transcriptomic analysis and metabolomic analysis. AGNH treatment obviously decreased the infarct volume and Zea-Longa 5-point neurological deficit scores, improved the survival percentage of rats, regional cerebral blood flow (rCBF), and rat activity distance and activity time. Transcriptomics showed that AGNH exerted its anti-inflammatory effects by affecting the regulatory network including Tyrobp, Syk, Tlr2, Myd88 and Ccl2 as the core. Integrating transcriptomics and metabolomics identified 8 key metabolites regulated by AGNH, including L-histidine, L-serine, L-alanine, fumaric acid, malic acid, and N-(L-arginino) succinate, 1-pyrroline-4-hydroxy-2-carboxylate and 1-methylhistamine in the rats with IS. Additionally, AGNH obviously reduced Tyrobp, Syk, Tlr2, Myd88 and Ccl2 at both the mRNA and protein levels, decreased IL-1β, KC-GRO, IL-13, TNF-α, cleaved caspase 3 and p65 nucleus translocation, but increased IκBα expression. Network pharmacology analysis showed that quercetin, beta-sitosterol, baicalein, naringenin, acacetin, berberine and palmatine may play an important role in protecting against IS. Taken together, this study reveals that AGNH reduced neuroinflammation and protected against IS by inhibiting Tyrobp/Syk and Tlr2/Myd88, as well as NF-κB signalling pathway and regulating multiple metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data supporting described findings can be obtained from the corresponding authors upon reasonable request.

Abbreviations

IS:

Ischaemic stroke

AD:

Alzheimer disease

AGNH:

AnGong NiuHuang

BBB:

Blood-brain barrier

DEGs:

Differentially expressed genes

DMs:

Differentially expressed metabolites

ELISA:

Enzyme-linked immunosorbent assay

GO:

Gene Ontology

rCBF:

Regional cerebral blood flow

I/R:

Ischaemia/reperfusion

IF:

Immunofluorescence staining

KEGG:

Kyoto Encyclopedia of Genes and Genomes

MCAO:

Middle cerebral artery occlusion

SD:

Sprague-Dawley

TCM:

Traditional Chinese medicine

TTC:

2,3,5-Triphenyltetrazolium chloride

Ccl2:

C-C motif chemokine ligand 2

Tlr2:

Toll-like receptor 2

Tlr7:

Toll-like receptor 7

Myd88:

Myeloid differentiation factor 88

Tyrobp:

TYRO protein tyrosine kinase-binding protein

Syk:

Spleen tyrosine kinase

References

  1. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA et al (2014) Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 383(9913):245–254. https://doi.org/10.1016/S0140-6736(13)61953-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C (2012) Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci 13(9):11753–11772. https://doi.org/10.3390/ijms130911753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shi H, Liu KJ (2007) Cerebral tissue oxygenation and oxidative brain injury during ischemia and reperfusion. Front Biosci 12:1318–1328. https://doi.org/10.2741/2150

    Article  CAS  PubMed  Google Scholar 

  4. Chamorro A, Dirnagl U, Urra X, Planas AM (2016) Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 15(8):869–881. https://doi.org/10.1016/S1474-4422(16)00114-9

    Article  CAS  PubMed  Google Scholar 

  5. Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD (2019) Global brain inflammation in stroke. Lancet Neurol 18(11):1058–1066. https://doi.org/10.1016/S1474-4422(19)30078-X

    Article  PubMed  Google Scholar 

  6. Hou J, Cao G, Tian L, Zhou R, Zhang Y, Xu H, Wu HW, Wang LF, Yang HJ, Zhang JJ (2022) Integrated transcriptomics and metabolomics analysis reveals that C3 and C5 are vital targets of DuZhi Wan in protecting against cerebral ischemic injury. Biomed Pharmacother 155:113703. https://doi.org/10.1016/j.biopha.2022.113703

    Article  CAS  PubMed  Google Scholar 

  7. Sun K, Fan J, Han J (2015) Ameliorating effects of traditional Chinese medicine preparation, Chinese materia medica and active compounds on ischemia/reperfusion-induced cerebral microcirculatory disturbances and neuron damage. Acta Pharm Sin B 5(1):8–24. https://doi.org/10.1016/j.apsb.2014.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang J, Zhou R, Xiang C, Fan F, Gao J, Zhang Y et al (2020) Enhanced thioredoxin, glutathione and Nrf2 antioxidant systems by safflower extract and aceglutamide attenuate cerebral ischaemia/reperfusion injury. J Cell Mol Med 24(9):4967–4980. https://doi.org/10.1111/jcmm.15099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang J, Zhou R, Cao G, Zhang Y, Xu H, Yang H (2022) Guhong injection prevents ischemic stroke-induced neuro-inflammation and neuron loss through regulation of C5ar1. Front Pharmacol 13:818245. https://doi.org/10.3389/fphar.2022.818245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang X, Wang L, Li J, Liang N, Wang Y, Liu J (2018) Chinese herbal medicine Dengzhan Shengmai capsule as adjunctive treatment for ischemic stroke: a systematic review and meta-analysis of randomized clinical trials. Complement Ther Med 36:82–89. https://doi.org/10.1016/j.ctim.2017.12.004

    Article  PubMed  Google Scholar 

  11. Cai Y, Zhang X, Huang Y, Wang L, Sun J, Liang W et al (2019) The add-on effect of dengzhan shengmai capsules on secondary prevention of ischemic stroke: a multicentre, randomised, placebo-controlled clinical trial. Complement Ther Med 46:189–194. https://doi.org/10.1016/j.ctim.2019.08.015

    Article  PubMed  Google Scholar 

  12. Commission CP (2015) Pharmacopoeia of the People’s Republic of China p.879. Chinese Medical Science and Technology Press, Beijing

    Google Scholar 

  13. Bai X, GFF, Tong L, Yang HJ (2023) CiteSpace knowledge map analysis of Angong Niuhuang pills in recent 20 years. Zhongguo Zhong Yao Za Zhi, 48(5). https://doi.org/10.19540/j.cnki.cjcmm.20221025.501

  14. Guo Y, Yan S, Xu L, Zhu G, Yu X, Tong X (2014) Use of angong niuhuang in treating central nervous system diseases and related research. Evid Based Complement Alternat Med 2014:346918. https://doi.org/10.1155/2014/346918

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu H, Yan Y, Pang P, Mao J, Hu X, Li D, Zhou B, Shan H (2019) Angong Niuhuang pill as adjuvant therapy for treating acute cerebral infarction and intracerebral hemorrhage: a meta-analysis of randomized controlled trials. J Ethnopharmacol 237:307–313. https://doi.org/10.1016/j.jep.2019.03.043

    Article  PubMed  Google Scholar 

  16. Tsoi B, Chen X, Gao C, Wang S, Yuen SC, Yang D et al (2019) Neuroprotective effects and hepatorenal toxicity of Angong Niuhuang Wan against ischemia-reperfusion brain injury in rats. Front Pharmacol 10:593. https://doi.org/10.3389/fphar.2019.00593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen H, Luo Y, Tsoi B, Gu B, Qi S, Shen J (2022) Angong Niuhuang Wan reduces hemorrhagic transformation and mortality in ischemic stroke rats with delayed thrombolysis: involvement of peroxynitrite-mediated MMP-9 activation. Chin Med 17(1):51. https://doi.org/10.1186/s13020-022-00595-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang H, Hui X, Wang Y, Wang Y, Lu X (2022) Angong Niuhuang pill ameliorates cerebral ischemia/reperfusion injury in mice partly by restoring gut microbiota dysbiosis. Front Pharmacol 13:1001422. https://doi.org/10.3389/fphar.2022.1001422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang J, Zhou R, Deng L, Cao G, Zhang Y, Xu H, Hou JY, Ju S, Yang HJ (2022) Huangbai liniment and berberine promoted wound healing in high-fat diet/streptozotocin-induced diabetic rats. Biomed Pharmacother 150:112948. https://doi.org/10.1016/j.biopha.2022.112948

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Zhang D, Bai Y, Xiao J, Jiao H, He R (2019) Ginaton improves neurological function in ischemic stroke rats via inducing autophagy and maintaining mitochondrial homeostasis. Neuropsychiatr Dis Treat 15:1813–1822. https://doi.org/10.2147/NDT.S205612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang J, Guo F, Zhou R, Xiang C, Zhang Y, Gao J et al (2021) Proteomics and transcriptome reveal the key transcription factors mediating the protection of Panax notoginseng saponins (PNS) against cerebral ischemia/reperfusion injury. Phytomedicine 92:153613. https://doi.org/10.1016/j.phymed.2021.153613

    Article  CAS  PubMed  Google Scholar 

  22. Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S (2004) Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol 56(4):468–477. https://doi.org/10.1002/ana.20199

    Article  PubMed  Google Scholar 

  23. Candelario-Jalil E, Yang Y, Rosenberg GA (2009) Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 158(3):983–994. https://doi.org/10.1016/j.neuroscience.2008.06.025

    Article  CAS  PubMed  Google Scholar 

  24. Neumann J, Riek-Burchardt M, Herz J, Doeppner TR, Konig R, Hutten H et al (2015) Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol 129(2):259–277. https://doi.org/10.1007/s00401-014-1355-2

    Article  CAS  PubMed  Google Scholar 

  25. Haure-Mirande JV, Audrain M, Ehrlich ME, Gandy S (2022) Microglial TYROBP/DAP12 in Alzheimer’s disease: transduction of physiological and pathological signals across TREM2. Mol Neurodegener 17(1):55. https://doi.org/10.1186/s13024-022-00552-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hickman S, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK et al (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16(12):1896–1905. https://doi.org/10.1038/nn.3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Audrain M, Haure-Mirande JV, Mleczko J, Wang M, Griffin JK, St George-Hyslop PH et al (2021) Reactive or transgenic increase in microglial TYROBP reveals a TREM2-independent TYROBP-APOE link in wild-type and Alzheimer’s-related mice. Alzheimers Dement 17(2):149–163. https://doi.org/10.1002/alz.12256

    Article  CAS  PubMed  Google Scholar 

  28. Li R, Lv ZY, Li YX, Li W, Hao YL (2022) Effects of TYROBP deficiency on neuroinflammation of a Alzheimer’s disease mouse model carrying a PSEN1 p.G378E mutation. Chin Med Sci J 37(4):320–330. https://doi.org/10.24920/004059

  29. Yasukawa S, Miyazaki Y, Yoshii C, Nakaya M, Ozaki N, Toda S et al (2014) An ITAM-Syk-CARD9 signalling axis triggers contact hypersensitivity by stimulating IL-1 production in dendritic cells. Nat Commun 5:3755. https://doi.org/10.1038/ncomms4755

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Ye XC, Hao Q, Ma WJ, Zhao QC, Wang WW, Yin HH et al (2020) Dectin-1/Syk signaling triggers neuroinflammation after ischemic stroke in mice. J Neuroinflammation 17(1):17. https://doi.org/10.1186/s12974-019-1693-z

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. van Eeuwijk JM, Stegner D, Lamb DJ, Kraft P, Beck S, Thielmann I, Kiefer F, Walzog B, Stoll G, Nieswandt B (2016) The novel oral syk inhibitor, Bl1002494, protects mice from arterial thrombosis and thromboinflammatory brain infarction. Arterioscler Thromb Vasc Biol 36(6):1247–1253. https://doi.org/10.1161/ATVBAHA.115.306883

    Article  CAS  PubMed  Google Scholar 

  32. Tajalli-Nezhad, S, Karimian, M, Beyer, C, Atlasi MA, Azami Tameh, A (2019) The regulatory role of Toll-like receptors after ischemic stroke: neurosteroids as TLR modulators with the focus on TLR2/4. Cell Mol Life Sci, 76(3): p. 523–537. https://doi.org/10.1007/s00018-018-2953-2

  33. Ziegler G, Freyer D, Harhausen D, Khojasteh U, Nietfeld W, Trendelenburg G (2011) Blocking TLR2 in vivo protects against accumulation of inflammatory cells and neuronal injury in experimental stroke. J Cereb Blood Flow Metab 31(2):757–766. https://doi.org/10.1038/jcbfm.2010.161

    Article  CAS  PubMed  Google Scholar 

  34. Li L, Lou W, Li H, Zhu Y, Huang X (2020) Upregulated C-C motif chemokine ligand 2 promotes ischemic stroke via chemokine signaling pathway. Ann Vasc Surg 68:476–486. https://doi.org/10.1016/j.avsg.2020.04.047

    Article  PubMed  Google Scholar 

  35. Vera-Aviles M, Vantana E, Kardinasari E, Koh NL, Latunde-Dada GO (2018) Protective role of histidine supplementation against oxidative stress damage in the management of anemia of chronic kidney disease. Pharmaceuticals (Basel) 11(4). https://doi.org/10.3390/ph11040111

  36. Sánchez-Pérez S, Celorio-Sardà R, Veciana-Nogués MT, Latorre-Moratalla ML, Comas-Basté O, Vidal-Carou MC (2022) 1-Methylhistamine as a potential biomarker of food histamine intolerance. A pilot study. Front Nutr 9:973682. https://doi.org/10.3389/fnut.2022.973682

  37. He, F, Yin, Z, Wu, C, Xia, Y, Wu, M, Li, , et.al. (2019) l-Serine lowers the inflammatory responses during Pasteurella multocida infection. Infect Immun, 87(12). https://doi.org/10.1128/iai.00677-19

  38. Zhai P, Xu L, Yang J, Jiang Z, Zhao G, Sun L et al (2015) Reduction of inflammatory responses by L-serine treatment leads to neuroprotection in mice after traumatic brain injury. Neuropharmacology 95:1–11. https://doi.org/10.1016/j.neuropharm.2015.02.026

    Article  CAS  PubMed  Google Scholar 

  39. Cunningham GA, McClenaghan NH, Flatt PR, Newsholme P (2005) L-alanine induces changes in metabolic and signal transduction gene expression in a clonal rat pancreatic beta-cell line and protects from pro-inflammatory cytokine-induced apoptosis. Clin Sci (Lond) 109(5):447–455. https://doi.org/10.1042/CS20050149

    Article  CAS  PubMed  Google Scholar 

  40. Cordaro M, Casili G, Paterniti I, Cuzzocrea S, Esposito E (2017) Fumaric acid esters attenuate secondary degeneration after spinal cord injury. J Neurotrauma 34(21):3027–3040. https://doi.org/10.1089/neu.2016.4678

    Article  PubMed  Google Scholar 

  41. Gold R, Linker RA, Stangel M (2012) Fumaric acid and its esters: an emerging treatment for multiple sclerosis with antioxidative mechanism of action. Clin Immunol 142(1):44–48. https://doi.org/10.1016/j.clim.2011.02.017

    Article  CAS  PubMed  Google Scholar 

  42. Tang X, Liu J, Dong W, Li P, Li L, Lin C, Zheng Y, Hou J, Li D (2013) The cardioprotective effects of citric acid and L-malic acid on myocardial ischemia/reperfusion injury. Evid Based Complement Alternat Med 2013:820695. https://doi.org/10.1155/2013/820695

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen SF, PM, Tang JC, Cheng J, Zhao D, Zhang Y, Liao HB, Liu R, Zhuang Y, Zhang ZF, Chen J, Lei RX, Li SF, Li HT, Wang ZF, Wan Q (2020) Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Mol Brain, 13(1): p. 63. https://doi.org/10.1186/s13041-020-00601-9

  44. Zhang L et al (2022) Neuroprotective effects of quercetin on ischemic stroke: a literature review. Front Pharmacol 13:854249. https://doi.org/10.3389/fphar.2022.854249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cen J et al (2022) A water-soluble quercetin conjugate with triple targeting exerts neuron-protective effect on cerebral ischemia by mitophagy activation. Adv Healthc Mater 11(22):e2200817. https://doi.org/10.1002/adhm.202200817

    Article  CAS  PubMed  Google Scholar 

  46. Tang X et al (2024) Treatment with beta-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis. Neural Regen Res 19(3):642–649. https://doi.org/10.4103/1673-5374.380904

    Article  PubMed  Google Scholar 

  47. Li M et al (2022) Baicalein ameliorates cerebral ischemia-reperfusion injury by inhibiting ferroptosis via regulating GPX4/ACSL4/ACSL3 axis. Chem Biol Interact 366:110137. https://doi.org/10.1016/j.cbi.2022.110137

    Article  CAS  PubMed  Google Scholar 

  48. Bai X et al (2014) Protective effect of naringenin in experimental ischemic stroke: down-regulated NOD2, RIP2, NF-kappaB, MMP-9 and up-regulated claudin-5 expression. Neurochem Res 39(8):1405–1415. https://doi.org/10.1007/s11064-014-1326-y

    Article  CAS  PubMed  Google Scholar 

  49. Bu J et al (2019) Acacetin protects against cerebral ischemia-reperfusion injury via the NLRP3 signaling pathway. Neural Regen Res 14(4):605–612. https://doi.org/10.4103/1673-5374.247465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu JR et al (2018) Berberine attenuates ischemia-reperfusion injury through inhibiting HMGB1 release and NF-kappaB nuclear translocation. Acta Pharmacol Sin 39(11):1706–1715. https://doi.org/10.1038/s41401-018-0160-1

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao L et al (2021) Berberine attenuates cerebral ischemia-reperfusion injury induced neuronal apoptosis by down-regulating the CNPY2 signaling pathway. Front Pharmacol 12:609693. https://doi.org/10.3389/fphar.2021.609693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pereira JF et al (2023) Palmatine, a natural alkaloid, attenuates memory deficits and neuroinflammation in mice submitted to permanent focal cerebral ischemia. J Neuroimmunol 381:578131. https://doi.org/10.1016/j.jneuroim.2023.578131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the professor for Yanan Sun for her technical support.

Funding

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (81974550), Scientific and Technological Innovation Project of China Academy of Chinese Medical Science (CI2021A04612, CI2021B017-03) and Fundamental Research Funds for the Central Public Welfare Research Institutes (ZZ13-YQ-046, ZXKT21007 and ZXKT23019).

Author information

Authors and Affiliations

Authors

Contributions

Jingjing Zhang: data curation, analysis, conceptualization, funding acquisition, investigation, writing—original draft; Liangliang Tian, Guangzhao Cao: data curation, investigation, visualization, software, validation; Xiaotong Zhu, Lihan Wang, Jingyi Hou, Yi Zhang, He Xu, Lixia Wang, Shicong Wang, Chen Zhao: data curation, investigation; Hongjun Yang: conceptualization, supervision, writing—review and editing. All data were generated in-house, and no paper mill was used. All authors agree to be accountable for all aspects of work ensuring integrity and accuracy.

Corresponding authors

Correspondence to Hongjun Yang or Jingjing Zhang.

Ethics declarations

Ethics Approval

All animal experiments were approved by Ethics Committee of Animal Care and Use of the Institute of Basic Theories for Chinese Medicine, Chinese Academy of Chinese Medical Sciences (No: IBTCMCACMS21-2203–05).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Cao, G., Zhu, X. et al. Transcriptomics and Metabolomics Unveil the Neuroprotection Mechanism of AnGong NiuHuang (AGNH) Pill Against Ischaemic Stroke Injury. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04016-8

Keywords

Navigation