Skip to main content

Advertisement

Log in

β2-Adrenergic Regulation of the Neuromuscular Transmission and Its Lipid-Dependent Switch

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

β2-Adrenoceptors (β2-ARs) are the most abundant subtype of adrenergic receptors in skeletal muscles. Their activation via a stabilization of postsynaptic architecture has beneficial effects in certain models of neuromuscular disorders. However, the ability of β2-ARs to regulate neuromuscular transmission at the presynaptic level is poorly understood. Using electrophysiological recordings and fluorescent FM dyes, we found that β2-AR activation with fenoterol enhanced an involvement of synaptic vesicles in exocytosis and neurotransmitter release during intense activity at the neuromuscular junctions of mouse diaphragm. This was accompanied by an improvement of contractile responses to phrenic nerve stimulation (but not direct stimulation of the muscle fibers) at moderate-to-high frequencies. β2-ARs mainly reside in lipid microdomains enriched with cholesterol and sphingomyelin. The latter is hydrolyzed by sphingomyelinases, whose upregulation occurs in many conditions characterized by muscle atrophy and sympathetic nerve hyperactivity. Sphingomyelinase treatment reversed the effects of β2-AR agonist on the neurotransmitter release and synaptic vesicle recruitment to the exocytosis during intense activity. Inhibition of Gi protein with pertussis toxin completely prevented the sphingomyelinase-mediated inversion in the β2-AR agonist action. Note that lipid raft disrupting enzyme cholesterol oxidase had the same effect on β2-AR agonist-mediated changes in neurotransmission as sphingomyelinase. Thus, β2-AR agonist fenoterol augmented recruitment and release of synaptic vesicles during intense activity in the diaphragm neuromuscular junctions. Sphingomyelin hydrolysis inversed the effects of β2-AR agonist on neurotransmission probably via switching to Gi protein-dependent signaling. This phenomenon may reflect a dependence of the β2-AR signaling on lipid raft integrity in the neuromuscular junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All mentioned data are represented in the main manuscript figures and supplementary figures. Other additional data will be made available on reasonable request.

Abbreviations

ACh:

Acetylcholine

β2-AR:

Beta2-adrenoceptor

ChO:

Cholesterol oxidase

EPP:

Endplate potential

MEPP:

Miniature endplate potential

NMJ:

Neuromuscular junction

nAChR:

Nicotinic acetylcholine receptor

PTX:

Pertussis toxin

SMase:

Sphingomyelinase

References

  1. Lynch GS, Ryall JG (2008) Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev 88(2):729–767. https://doi.org/10.1152/physrev.00028.2007

    Article  CAS  PubMed  Google Scholar 

  2. Hostrup M, Kalsen A, Ortenblad N, Juel C, Morch K, Rzeppa S, Karlsson S, Backer V, Bangsbo J (2014) Beta2-adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+-K+-ATPase Vmax in trained men. J Physiol 592(24):5445–5459. https://doi.org/10.1113/jphysiol.2014.277095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meister J, Bone DBJ, Knudsen JR, Barella LF, Liu L, Lee R, Gavrilova O, Chen M, Weinstein LS, Kleinert M, Jensen TE, Wess J (2022) In vivo metabolic effects after acute activation of skeletal muscle G(s) signaling. Mol Metab 55:101415. https://doi.org/10.1016/j.molmet.2021.101415

    Article  CAS  PubMed  Google Scholar 

  4. Goncalves DA, Silveira WA, Manfredi LH, Graca FA, Armani A, Bertaggia E, BT ON, Lautherbach N, Machado J, Nogara L, Pereira MG, Arcidiacono D, Realdon S, Kahn CR, Sandri M, Kettelhut IC, Navegantes LCC (2019) Insulin/IGF1 signalling mediates the effects of beta(2) -adrenergic agonist on muscle proteostasis and growth. J Cachexia Sarcopenia Muscle 10(2):455-475. https://doi.org/10.1002/jcsm.12395

  5. Jessen S, Reitelseder S, Kalsen A, Kreiberg M, Onslev J, Gad A, Ortenblad N, Backer V, Holm L, Bangsbo J, Hostrup M (2021) beta(2)-Adrenergic agonist salbutamol augments hypertrophy in MHCIIa fibers and sprint mean power output but not muscle force during 11 weeks of resistance training in young men. J Appl Physiol (1985) 130(3):617–626. https://doi.org/10.1152/japplphysiol.00553.2020

    Article  CAS  PubMed  Google Scholar 

  6. Ohnuki Y, Umeki D, Mototani Y, Jin H, Cai W, Shiozawa K, Suita K, Saeki Y, Fujita T, Ishikawa Y, Okumura S (2014) Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by beta2-adrenoceptor stimulation. J Physiol 592(24):5461–5475. https://doi.org/10.1113/jphysiol.2014.282996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dutt V, Gupta S, Dabur R, Injeti E, Mittal A (2015) Skeletal muscle atrophy: potential therapeutic agents and their mechanisms of action. Pharmacol Res 99:86–100. https://doi.org/10.1016/j.phrs.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  8. Yuan S, Zheng S, Zheng K, Gao Y, Chen M, Li Y, Bai X (2021) Sympathetic activity is correlated with satellite cell aging and myogenesis via beta2-adrenoceptor. Stem Cell Res Ther 12(1):505. https://doi.org/10.1186/s13287-021-02571-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ryall JG, Schertzer JD, Alabakis TM, Gehrig SM, Plant DR, Lynch GS (2008) Intramuscular beta2-agonist administration enhances early regeneration and functional repair in rat skeletal muscle after myotoxic injury. J Appl Physiol (1985) 105(1):165–172. https://doi.org/10.1152/japplphysiol.00317.2007

    Article  CAS  PubMed  Google Scholar 

  10. Khan MM, Lustrino D, Silveira WA, Wild F, Straka T, Issop Y, O’Connor E, Cox D, Reischl M, Marquardt T, Labeit D, Labeit S, Benoit E, Molgo J, Lochmuller H, Witzemann V, Kettelhut IC, Navegantes LC, Pozzan T, Rudolf R (2016) Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease. Proc Natl Acad Sci U S A 113(3):746–750. https://doi.org/10.1073/pnas.1524272113

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Petrov AM, Zakirjanova GF, Kovyazina IV, Tsentsevitsky AN, Bukharaeva EA (2022) Adrenergic receptors control frequency-dependent switching of the exocytosis mode between “full-collapse” and “kiss-and-run” in murine motor nerve terminal. Life Sci 296:120433. https://doi.org/10.1016/j.lfs.2022.120433

    Article  CAS  PubMed  Google Scholar 

  12. Straka T, Vita V, Prokshi K, Horner SJ, Khan MM, Pirazzini M, Williams MPI, Hafner M, Zaglia T, Rudolf R (2018) Postnatal development and distribution of sympathetic innervation in mouse skeletal muscle. Int J Mol Sci 19(7). https://doi.org/10.3390/ijms19071935

  13. Fogarty MJ, Gonzalez Porras MA, Mantilla CB, Sieck GC (2019) Diaphragm neuromuscular transmission failure in aged rats. J Neurophysiol 122(1):93–104. https://doi.org/10.1152/jn.00061.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hepple RT, Rice CL (2016) Innervation and neuromuscular control in ageing skeletal muscle. J Physiol 594(8):1965–1978. https://doi.org/10.1113/JP270561

    Article  CAS  PubMed  Google Scholar 

  15. Arnold WD, Clark BC (2023) Neuromuscular junction transmission failure in aging and sarcopenia: the nexus of the neurological and muscular systems. Ageing Res Rev 89:101966. https://doi.org/10.1016/j.arr.2023.101966

    Article  CAS  PubMed  Google Scholar 

  16. Chang M, Cai Y, Gao Z, Chen X, Liu B, Zhang C, Yu W, Cao Q, Shen Y, Yao X, Chen X, Sun H (2023) Duchenne muscular dystrophy: pathogenesis and promising therapies. J Neurol 270(8):3733–3749. https://doi.org/10.1007/s00415-023-11796-x

    Article  CAS  PubMed  Google Scholar 

  17. Sirago G, Pellegrino MA, Bottinelli R, Franchi MV, Narici MV (2023) Loss of neuromuscular junction integrity and muscle atrophy in skeletal muscle disuse. Ageing Res Rev 83:101810. https://doi.org/10.1016/j.arr.2022.101810

    Article  CAS  PubMed  Google Scholar 

  18. Zakyrjanova GF, Giniatullin AR, Mukhutdinova KA, Kuznetsova EA, Petrov AM (2021) Early differences in membrane properties at the neuromuscular junctions of ALS model mice: Effects of 25-hydroxycholesterol. Life Sci 273:119300. https://doi.org/10.1016/j.lfs.2021.119300

    Article  CAS  PubMed  Google Scholar 

  19. Bartus RT, Betourne A, Basile A, Peterson BL, Glass J, Boulis NM (2016) Beta2-Adrenoceptor agonists as novel, safe and potentially effective therapies for amyotrophic lateral sclerosis (ALS). Neurobiol Dis 85:11–24. https://doi.org/10.1016/j.nbd.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  20. Webster RG, Cossins J, Lashley D, Maxwell S, Liu WW, Wickens JR, Martinez-Martinez P, de Baets M, Beeson D (2013) A mouse model of the slow channel myasthenic syndrome: neuromuscular physiology and effects of ephedrine treatment. Exp Neurol 248:286–298. https://doi.org/10.1016/j.expneurol.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  21. Ghazanfari N, Morsch M, Tse N, Reddel SW, Phillips WD (2014) Effects of the ss2-adrenoceptor agonist, albuterol, in a mouse model of anti-MuSK myasthenia gravis. PLoS One 9(2):e87840. https://doi.org/10.1371/journal.pone.0087840

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. McMacken G, Cox D, Roos A, Muller J, Whittaker R, Lochmuller H (2018) The beta-adrenergic agonist salbutamol modulates neuromuscular junction formation in zebrafish models of human myasthenic syndromes. Hum Mol Genet 27(9):1556–1564. https://doi.org/10.1093/hmg/ddy062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Webster RG, Vanhaesebrouck AE, Maxwell SE, Cossins JA, Liu W, Ueta R, Yamanashi Y, Beeson DMW (2020) Effect of salbutamol on neuromuscular junction function and structure in a mouse model of DOK7 congenital myasthenia. Hum Mol Genet 29(14):2325–2336. https://doi.org/10.1093/hmg/ddaa116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clausen L, Cossins J, Beeson D (2018) Beta-2 adrenergic receptor agonists enhance AChR clustering in C2C12 myotubes: implications for therapy of myasthenic disorders. J Neuromuscul Dis 5(2):231–240. https://doi.org/10.3233/JND-170293

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vanhaesebrouck AE, Webster R, Maxwell S, Rodriguez Cruz PM, Cossins J, Wickens J, Liu WW, Cetin H, Cheung J, Ramjattan H, Palace J, Beeson D (2019) Beta2-adrenergic receptor agonists ameliorate the adverse effect of long-term pyridostigmine on neuromuscular junction structure. Brain 142(12):3713–3727. https://doi.org/10.1093/brain/awz322

    Article  PubMed  PubMed Central  Google Scholar 

  26. Arkhipov A, Khuzakhmetova V, Petrov AM, Bukharaeva EA (2022) Catecholamine-dependent hyperpolarization of the junctional membrane via beta2- adrenoreceptor/G(i)-protein/alpha2-Na-K-ATPase pathway. Brain Res 1795:148072. https://doi.org/10.1016/j.brainres.2022.148072

    Article  CAS  PubMed  Google Scholar 

  27. Heiny JA, Kravtsova VV, Mandel F, Radzyukevich TL, Benziane B, Prokofiev AV, Pedersen SE, Chibalin AV, Krivoi II (2010) The nicotinic acetylcholine receptor and the Na, K-ATPase alpha2 isoform interact to regulate membrane electrogenesis in skeletal muscle. J Biol Chem 285(37):28614–28626. https://doi.org/10.1074/jbc.M110.150961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Petrov AM, Kravtsova VV, Matchkov VV, Vasiliev AN, Zefirov AL, Chibalin AV, Heiny JA, Krivoi II (2017) Membrane lipid rafts are disturbed in the response of rat skeletal muscle to short-term disuse. Am J Physiol Cell Physiol 312(5):C627–C637. https://doi.org/10.1152/ajpcell.00365.2016

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wood SJ, Slater CR (2001) Safety factor at the neuromuscular junction. Prog Neurobiol 64(4):393–429. https://doi.org/10.1016/s0301-0082(00)00055-1

    Article  CAS  PubMed  Google Scholar 

  30. Rodrigues AZC, Wang ZM, Messi ML, Delbono O (2019) Sympathomimetics regulate neuromuscular junction transmission through TRPV1, P/Q- and N-type Ca(2+) channels. Mol Cell Neurosci 95:59–70. https://doi.org/10.1016/j.mcn.2019.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang ZM, Rodrigues ACZ, Messi ML, Delbono O (2020) Aging blunts sympathetic neuron regulation of motoneurons synaptic vesicle release mediated by beta1- and alpha2B-adrenergic receptors in geriatric mice. J Gerontol A Biol Sci Med Sci 75(8):1473–1480. https://doi.org/10.1093/gerona/glaa022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsentsevitsky A, Nurullin L, Tyapkina O, Bukharaeva E (2020) Sympathomimetics regulate quantal acetylcholine release at neuromuscular junctions through various types of adrenoreceptors. Mol Cell Neurosci 108:103550. https://doi.org/10.1016/j.mcn.2020.103550

    Article  CAS  PubMed  Google Scholar 

  33. Tsentsevitsky AN, Kovyazina IV, Bukharaeva EA (2019) Diverse effects of noradrenaline and adrenaline on the quantal secretion of acetylcholine at the mouse neuromuscular junction. Neuroscience 423:162–171. https://doi.org/10.1016/j.neuroscience.2019.10.049

    Article  CAS  PubMed  Google Scholar 

  34. Tsentsevitsky AN, Gafurova CR, Mukhutdinova KA, Giniatullin AR, Fedorov NS, Malomouzh AI, Petrov AM (2023) Sphingomyelinase modulates synaptic vesicle mobilization at the mice neuromuscular junctions. Life Sci 318:121507. https://doi.org/10.1016/j.lfs.2023.121507

    Article  CAS  PubMed  Google Scholar 

  35. Xiang Y, Rybin VO, Steinberg SF, Kobilka B (2002) Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. J Biol Chem 277(37):34280–34286. https://doi.org/10.1074/jbc.M201644200

    Article  CAS  PubMed  Google Scholar 

  36. Odnoshivkina YG, Sytchev VI, Petrov AM (2017) Cholesterol regulates contractility and inotropic response to beta2-adrenoceptor agonist in the mouse atria: involvement of Gi-protein-Akt-NO-pathway. J Mol Cell Cardiol 107:27–40. https://doi.org/10.1016/j.yjmcc.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  37. Bryndina IG, Shalagina MN, Protopopov VA, Sekunov AV, Zefirov AL, Zakirjanova GF, Petrov AM (2021) Early lipid raft-related changes: interplay between unilateral denervation and hindlimb suspension. Int J Mol Sci 22(5). https://doi.org/10.3390/ijms22052239

  38. Empinado HM, Deevska GM, Nikolova-Karakashian M, Yoo JK, Christou DD, Ferreira LF (2014) Diaphragm dysfunction in heart failure is accompanied by increases in neutral sphingomyelinase activity and ceramide content. Eur J Heart Fail 16(5):519–525. https://doi.org/10.1002/ejhf.73

    Article  CAS  PubMed  Google Scholar 

  39. Olsson K, Cheng AJ, Al-Ameri M, Tardif N, Melin M, Rooyackers O, Lanner JT, Westerblad H, Gustafsson T, Bruton JD, Rullman E (2022) Sphingomyelinase activity promotes atrophy and attenuates force in human muscle fibres and is elevated in heart failure patients. J Cachexia Sarcopenia Muscle 13(5):2551–2561. https://doi.org/10.1002/jcsm.13029

    Article  PubMed  PubMed Central  Google Scholar 

  40. Petrov AM, Shalagina MN, Protopopov VA, Sergeev VG, Ovechkin SV, Ovchinina NG, Sekunov AV, Zefirov AL, Zakirjanova GF, Bryndina IG (2019) Changes in membrane ceramide pools in rat soleus muscle in response to short-term disuse. Int J Mol Sci 20(19). https://doi.org/10.3390/ijms20194860

  41. Choi BJ, Park KH, Park MH, Huang EJ, Kim SH, Bae JS, Jin HK (2022) Acid sphingomyelinase inhibition improves motor behavioral deficits and neuronal loss in an amyotrophic lateral sclerosis mouse model. BMB Rep 55(12):621–626. https://doi.org/10.5483/BMBRep.2022.55.12.142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee YI, Leem YH (2019) Acid sphingomyelinase inhibition alleviates muscle damage in gastrocnemius after acute strenuous exercise. J Exerc Nutrition Biochem 23(2):1–6. https://doi.org/10.20463/jenb.2019.0009

    Article  PubMed  PubMed Central  Google Scholar 

  43. Odnoshivkina JG, Sibgatullina GV, Petrov AM (2023) Lipid-dependent regulation of neurotransmitter release from sympathetic nerve endings in mice atria. Biochim Biophys Acta Biomembr 1865(7):184197. https://doi.org/10.1016/j.bbamem.2023.184197

    Article  CAS  PubMed  Google Scholar 

  44. Zakirjanova GF, Giniatullin AR, Gafurova CR, Malomouzh AI, Fedorov NS, Khaziev AN, Tsentsevitsky AN, Petrov AM (2023) Effects of cholesterol oxidase on neurotransmission and acetylcholine levels at the mice neuromuscular junctions. Archives of Biochemistry and Biophysics 749. https://doi.org/10.1016/j.abb.2023.109803

  45. Zakyrjanova GF, Tsentsevitsky AN, Kuznetsova EA, Petrov AM (2021) Immune-related oxysterol modulates neuromuscular transmission via non-genomic liver X receptor-dependent mechanism. Free Radic Biol Med 174:121–134. https://doi.org/10.1016/j.freeradbiomed.2021.08.013

    Article  CAS  PubMed  Google Scholar 

  46. Odnoshivkina YG, Petrov AM, Zefirov AL (2011) The effects of beta (2) -adrenoreceptor activation on the contractility, Ca-signals and nitric oxide production in the mouse atria. Acta Naturae 3(2):103–112

    Article  PubMed  PubMed Central  Google Scholar 

  47. Odnoshivkina UG, Sytchev VI, Nurullin LF, Giniatullin AR, Zefirov AL, Petrov AM (2015) β2-adrenoceptor agonist-evoked reactive oxygen species generation in mouse atria: implication in delayed inotropic effect. Eur J Pharmacol 765:140–153. https://doi.org/10.1016/j.ejphar.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  48. Zakyrjanova GF, Gilmutdinov AI, Tsentsevitsky AN, Petrov AM (2020) Olesoxime, a cholesterol-like neuroprotectant restrains synaptic vesicle exocytosis in the mice motor nerve terminals: possible role of VDACs. Biochim Biophys Acta Mol Cell Biol Lipids 1865(9). https://doi.org/10.1016/j.bbalip.2020.158739

  49. McLachlan EM, Martin AR (1981) Non-linear summation of end-plate potentials in the frog and mouse. J Physiol 311:307–324. https://doi.org/10.1113/jphysiol.1981.sp013586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rozas JL, Gomez-Sanchez L, Tomas-Zapico C, Lucas JJ, Fernandez-Chacon R (2011) Increased neurotransmitter release at the neuromuscular junction in a mouse model of polyglutamine disease. J Neurosci 31(3):1106–1113. https://doi.org/10.1523/JNEUROSCI.2011-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lenina O, Petrov K, Kovyazina I, Malomouzh A (2019) Enhancement of mouse diaphragm contractility in the presence of antagonists of GABAA and GABAB receptors. Exp Physiol 104(7):1004–1010. https://doi.org/10.1113/EP087611

    Article  CAS  PubMed  Google Scholar 

  52. Betz WJ, Bewick GS (1992) Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255(5041):200–203. https://doi.org/10.1126/science.1553547

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Richards DA, Guatimosim C, Betz WJ (2000) Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27(3):551–559. https://doi.org/10.1016/s0896-6273(00)00065-9

    Article  CAS  PubMed  Google Scholar 

  54. Wu Y, Yeh FL, Mao F, Chapman ER (2009) Biophysical characterization of styryl dye-membrane interactions. Biophys J 97(1):101–109. https://doi.org/10.1016/j.bpj.2009.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gafurova CR, Tsentsevitsky AN, Petrov AM (2022) Frequency-dependent engagement of synaptic vesicle pools in the mice motor nerve terminals. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-022-01202-x

    Article  PubMed  Google Scholar 

  56. Lee KZ, Fuller DD (2011) Neural control of phrenic motoneuron discharge. Respir Physiol Neurobiol 179(1):71–79. https://doi.org/10.1016/j.resp.2011.02.014

    Article  PubMed  PubMed Central  Google Scholar 

  57. Plazinska A, Plazinski W, Jozwiak K (2015) Agonist binding by the beta2-adrenergic receptor: an effect of receptor conformation on ligand association-dissociation characteristics. Eur Biophys J 44(3):149–163. https://doi.org/10.1007/s00249-015-1010-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Richards DA, Guatimosim C, Rizzoli SO, Betz WJ (2003) Synaptic vesicle pools at the frog neuromuscular junction. Neuron 39(3):529–541. https://doi.org/10.1016/s0896-6273(03)00405-7

    Article  CAS  PubMed  Google Scholar 

  59. Rizzoli SO, Betz WJ (2005) Synaptic vesicle pools. Nat Rev Neurosci 6(1):57–69. https://doi.org/10.1038/nrn1583

    Article  CAS  PubMed  Google Scholar 

  60. Sytchev VI, Odnoshivkina YG, Ursan RV, Petrov AM (2017) Oxysterol, 5alpha-cholestan-3-one, modulates a contractile response to beta2-adrenoceptor stimulation in the mouse atria: involvement of NO signaling. Life Sci 188:131–140. https://doi.org/10.1016/j.lfs.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  61. Strohman MJ, Maeda S, Hilger D, Masureel M, Du Y, Kobilka BK (2019) Local membrane charge regulates beta2 adrenergic receptor coupling to Gi3. Nat Commun 10(1):2234. https://doi.org/10.1038/s41467-019-10108-0

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Bryndina IG, Shalagina MN, Sekunov AV, Zefirov AL, Petrov AM (2018) Clomipramine counteracts lipid raft disturbance due to short-term muscle disuse. Neurosci Lett 664:1–6. https://doi.org/10.1016/j.neulet.2017.11.009

    Article  CAS  PubMed  Google Scholar 

  63. Verma MK, Yateesh AN, Neelima K, Pawar N, Sandhya K, Poornima J, Lakshmi MN, Yogeshwari S, Pallavi PM, Oommen AM, Somesh BP, Jagannath MR (2014) Inhibition of neutral sphingomyelinases in skeletal muscle attenuates fatty-acid induced defects in metabolism and stress. Springerplus 3:255. https://doi.org/10.1186/2193-1801-3-255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. De Larichaudy J, Zufferli A, Serra F, Isidori AM, Naro F, Dessalle K, Desgeorges M, Piraud M, Cheillan D, Vidal H, Lefai E, Nemoz G (2012) TNF-alpha- and tumor-induced skeletal muscle atrophy involves sphingolipid metabolism. Skelet Muscle 2(1):2. https://doi.org/10.1186/2044-5040-2-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Supinski GS, Alimov AP, Wang L, Song XH, Callahan LA (2015) Neutral sphingomyelinase 2 is required for cytokine-induced skeletal muscle calpain activation. Am J Physiol Lung Cell Mol Physiol 309(6):L614-624. https://doi.org/10.1152/ajplung.00141.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang ZM, Messi ML, Grinevich V, Budygin E, Delbono O (2020) Postganglionic sympathetic neurons, but not locus coeruleus optostimulation, activates neuromuscular transmission in the adult mouse in vivo. Mol Cell Neurosci 109:103563. https://doi.org/10.1016/j.mcn.2020.103563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu X, Kaindl J, Clark MJ, Hubner H, Hirata K, Sunahara RK, Gmeiner P, Kobilka BK, Liu X (2021) Binding pathway determines norepinephrine selectivity for the human beta(1)AR over beta(2)AR. Cell Res 31(5):569–579. https://doi.org/10.1038/s41422-020-00424-2

    Article  CAS  PubMed  Google Scholar 

  68. Uzuki M, Yamakage M, Fujimura N, Namiki A (2007) Direct inotropic effect of the beta-2 receptor agonist terbutaline on impaired diaphragmatic contractility in septic rats. Heart Lung 36(2):140–147. https://doi.org/10.1016/j.hrtlng.2006.06.006

    Article  PubMed  Google Scholar 

  69. Fujimura N, Sumita S, Narimatsu E, Nakayama Y, Shitinohe Y, Namiki A (2000) Effects of isoproterenol on diaphragmatic contractility in septic peritonitis. Am J Respir Crit Care Med 161(2 Pt 1):440–446. https://doi.org/10.1164/ajrccm.161.2.9904044

    Article  CAS  PubMed  Google Scholar 

  70. Suzuki S, Numata H, Sano F, Yoshiike Y, Miyashita A, Okubo T (1988) Effects and mechanism of fenoterol on fatigued canine diaphragm. Am Rev Respir Dis 137(5):1048–1054. https://doi.org/10.1164/ajrccm/137.5.1048

    Article  CAS  PubMed  Google Scholar 

  71. Van der Heijden HF, Van Balkom RH, Folgering HT, Van Herwaarden CL, Dekhuijzen PN (1996) Effects of salbutamol on rat diaphragm contractility. J Appl Physiol (1985) 81(3):1103–1110. https://doi.org/10.1152/jappl.1996.81.3.1103

    Article  PubMed  Google Scholar 

  72. Duarte T, Menezes-Rodrigues FS, Godinho RO (2012) Contribution of the extracellular cAMP-adenosine pathway to dual coupling of beta2-adrenoceptors to Gs and Gi proteins in mouse skeletal muscle. J Pharmacol Exp Ther 341(3):820–828. https://doi.org/10.1124/jpet.112.192997

    Article  CAS  PubMed  Google Scholar 

  73. Ohnuki Y, Umeki D, Mototani Y, Shiozawa K, Nariyama M, Ito A, Kawamura N, Yagisawa Y, Jin H, Cai W, Suita K, Saeki Y, Fujita T, Ishikawa Y, Okumura S (2016) Role of phosphodiesterase 4 expression in the Epac1 signaling-dependent skeletal muscle hypertrophic action of clenbuterol. Physiol Rep 4(10). https://doi.org/10.14814/phy2.12791

  74. Cairns SP, Borrani F (2015) beta-Adrenergic modulation of skeletal muscle contraction: key role of excitation-contraction coupling. J Physiol 593(21):4713–4727. https://doi.org/10.1113/JP270909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ippolito M, Benovic JL (2021) Biased agonism at beta-adrenergic receptors. Cell Signal 80:109905. https://doi.org/10.1016/j.cellsig.2020.109905

    Article  CAS  PubMed  Google Scholar 

  76. Kim J, Grotegut CA, Wisler JW, Li T, Mao L, Chen M, Chen W, Rosenberg PB, Rockman HA, Lefkowitz RJ (2018) Beta-arrestin 1 regulates beta2-adrenergic receptor-mediated skeletal muscle hypertrophy and contractility. Skelet Muscle 8(1):39. https://doi.org/10.1186/s13395-018-0184-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rodrigues ACZ, Messi ML, Wang ZM, Bonilla HJ, Freeman WM, Delbono O (2021) Long-term, induced expression of Hand2 in peripheral sympathetic neurons ameliorates sarcopenia in geriatric mice. J Cachexia Sarcopenia Muscle 12(6):1908–1924. https://doi.org/10.1002/jcsm.12790

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rodrigues ACZ, Messi ML, Wang ZM, Abba MC, Pereyra A, Birbrair A, Zhang T, O’Meara M, Kwan P, Lopez EIS, Willis MS, Mintz A, Files DC, Furdui C, Oppenheim RW, Delbono O (2019) The sympathetic nervous system regulates skeletal muscle motor innervation and acetylcholine receptor stability. Acta Physiol (Oxf) 225(3):e13195. https://doi.org/10.1111/apha.13195

    Article  CAS  PubMed  Google Scholar 

  79. Russ DW, Wills AM, Boyd IM, Krause J (2014) Weakness, SR function and stress in gastrocnemius muscles of aged male rats. Exp Gerontol 50:40–44. https://doi.org/10.1016/j.exger.2013.11.018

    Article  CAS  PubMed  Google Scholar 

  80. Bost ER, Frye GS, Ahn B, Ferreira LF (2015) Diaphragm dysfunction caused by sphingomyelinase requires the p47(phox) subunit of NADPH oxidase. Respir Physiol Neurobiol 205:47–52. https://doi.org/10.1016/j.resp.2014.10.011

    Article  CAS  PubMed  Google Scholar 

  81. Slotte JP (2016) The importance of hydrogen bonding in sphingomyelin’s membrane interactions with co-lipids. Biochim Biophys Acta 1858(2):304–310. https://doi.org/10.1016/j.bbamem.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  82. Murata M, Matsumori N, Kinoshita M, London E (2022) Molecular substructure of the liquid-ordered phase formed by sphingomyelin and cholesterol: sphingomyelin clusters forming nano-subdomains are a characteristic feature. Biophys Rev 14(3):655–678. https://doi.org/10.1007/s12551-022-00967-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rumzhum NN, Rahman MM, Oliver BG, Ammit AJ (2016) Effect of sphingosine 1-phosphate on cyclo-oxygenase-2 expression, prostaglandin E2 secretion, and beta2-adrenergic receptor desensitization. Am J Respir Cell Mol Biol 54(1):128–135. https://doi.org/10.1165/rcmb.2014-0443OC

    Article  CAS  PubMed  Google Scholar 

  84. Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 390(6655):88–91. https://doi.org/10.1038/36362

    Article  CAS  PubMed  ADS  Google Scholar 

  85. Manna M, Niemela M, Tynkkynen J, Javanainen M, Kulig W, Muller DJ, Rog T, Vattulainen I (2016) Mechanism of allosteric regulation of beta(2)-adrenergic receptor by cholesterol. Elife 5. https://doi.org/10.7554/eLife.18432

  86. Ingolfsson HI, Carpenter TS, Bhatia H, Bremer PT, Marrink SJ, Lightstone FC (2017) Computational lipidomics of the neuronal plasma membrane. Biophys J 113(10):2271–2280. https://doi.org/10.1016/j.bpj.2017.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kuromi H, Kidokoro Y (2000) Tetanic stimulation recruits vesicles from reserve pool via a cAMP-mediated process in Drosophila synapses. Neuron 27(1):133–143. https://doi.org/10.1016/s0896-6273(00)00015-5

    Article  CAS  PubMed  Google Scholar 

  88. Petrov AM, Giniatullin AR, Zefirov AL (2008) Role of the cAMP cascade in the turnover of synaptic vesicles of the frog motor nerve terminal. Neurochem J 2(3):175–182. https://doi.org/10.1134/s1819712408030069

    Article  Google Scholar 

  89. Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ (2005) Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47(3):365–378. https://doi.org/10.1016/j.neuron.2005.06.018

    Article  CAS  PubMed  Google Scholar 

  90. Santafe MM, Garcia N, Lanuza MA, Tomas M, Tomas J (2009) Interaction between protein kinase C and protein kinase A can modulate transmitter release at the rat neuromuscular synapse. J Neurosci Res 87(3):683–690. https://doi.org/10.1002/jnr.21885

    Article  CAS  PubMed  Google Scholar 

  91. Losavio A, Muchnik S (2000) Facilitation of spontaneous acetylcholine release induced by activation of cAMP in rat neuromuscular junctions. Life Sci 66(26):2543–2556. https://doi.org/10.1016/s0024-3205(00)00588-9

    Article  CAS  PubMed  Google Scholar 

  92. Menegon A, Bonanomi D, Albertinazzi C, Lotti F, Ferrari G, Kao HT, Benfenati F, Baldelli P, Valtorta F (2006) Protein kinase A-mediated synapsin I phosphorylation is a central modulator of Ca2+-dependent synaptic activity. J Neurosci 26(45):11670–11681. https://doi.org/10.1523/JNEUROSCI.3321-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Polishchuk A, Cilleros-Mane V, Just-Borras L, Balanya-Segura M, Vandellos Pont G, Silvera Simon C, Tomas M, Garcia N, Tomas J, Lanuza MA (2023) Synaptic retrograde regulation of the PKA-induced SNAP-25 and Synapsin-1 phosphorylation. Cell Mol Biol Lett 28(1):17. https://doi.org/10.1186/s11658-023-00431-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

ANT was supported by assignment for Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation (grant numbers 21–14-00044, https://rscf.ru/project/21-14-00044/ (#3.3–3.6 Result’s sections); 23–15-00124, https://www.rscf.ru/project/23-15-00124/ (#3.1 and 3.2 Result’s sections); and 23–75-10022, https://www.rscf.ru/project/23-75-10022/ (#3.7 Result’s section)).

Author information

Authors and Affiliations

Authors

Contributions

ANT: electrophysiological experiments, visualization, and data analysis, review and editing; CRG: fluorescent experiments, visualization, and data analysis; NSF: contraction recording and data analysis; AIM: visualization, review and editing; ANK: electrophysiological data analysis; AMP: conceptualization; writing, review, and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Alexey M. Petrov.

Ethics declarations

Ethics Approval

The experimental protocol met the requirements of the EU Directive 2010/63/EU and was approved by the Local Ethical Committee of Kazan Federal Scientific Centre (#23/7; May 12, 2023) and Kazan Medical University (Protocol #1/January 25, 2022). The current study was conducted in compliance with the NIH Guide for the Care and Use of Laboratory Animals. Research does not involve human patients.

Consent for Publication

All authors consent to publish the article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chulpan R Gafurova and Andrei N. Tsentsevitsky are first coauthors with equal contribution.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 523 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gafurova, C.R., Tsentsevitsky, A.N., Fedorov, N.S. et al. β2-Adrenergic Regulation of the Neuromuscular Transmission and Its Lipid-Dependent Switch. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03991-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03991-2

Keywords

Navigation