Skip to main content

Advertisement

Log in

Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3’s active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

VD:

Vitamin D3

mVDR:

Membrane Vitamin D receptor

nVDR:

Nuclear Vitamin D receptor

VDRE:

Vitamin D response element

1-alpha:

V25-dihydroxyvitamin D3 (1a,25-(OH)2D3) or calcitriol

25:

hydroxyvitamin D3 or 25(OH)D3 or calcidio

GPCR:

G-protein-coupled receptors

MAPK:

Mitogen-activated protein kinases

ERK:

Extracellular signal-regulated kinase

AKT:

Protein kinase B

cAMP:

Cyclic adenosine monophosphate

PKA:

Protein kinase A

PLC:

Phospholipase C

PIP2:

Phosphatidylinositol 4,5-bisphosphate

DAG:

Diacylglycerol

IP3:

1,4,5-Trisphosphate

Ca+2 :

Calcium

RXR:

Retinoid X receptor

CREB:

CAMP response element-binding protein

IL-10:

Interleukin 10

IL-4:

Interleukin 4

TGF:

β-Transforming growth factor-β

BDNF:

Brain-derived neurotrophic factor

NGF:

Nerve growth factor

GDNF:

Glial cell line-derived neurotrophic factor

NT-3:

Neurotrophin-3

NT-4:

Neurotrophin-4

References     

  1. Nandi A, Counts N, Chen S et al (2022) Global and regional projections of the economic burden of Alzheimer’s disease and related dementias from 2019 to 2050: a value of statistical life approach. EClinicalMedicine 51:101580

  2. Reynolds CF 3rd, Jeste DV, Sachdev PS, Blazer DG (2022) Mental health care for older adults: recent advances and new directions in clinical practice and research. World Psychiatry 21:336–363

    Article  PubMed  PubMed Central  Google Scholar 

  3. He W, Deng Y, Luo X (2022) Bibliometric analysis of the global research status and trends of the association between vitamin D and infections from 2001 to 2021. Front Public Health 10:934106

    Article  PubMed  PubMed Central  Google Scholar 

  4. Silberberg D, Anand NP, Michels K, Kalaria RN (2015) Brain and other nervous system disorders across the lifespan — global challenges and opportunities. Nature 527:S151–S154

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Ding C, Wu Y, Chen X, Chen Y, Wu Z, Lin Z et al (2022) Global, regional, and national burden and attributable risk factors of neurological disorders: the global burden of disease study 1990–2019. Front Public Health 10:952161

  6. Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N et al (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:459–480

    Article  Google Scholar 

  7. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7: e105–25.

  8. Charlson F, van Ommeren M, Flaxman A, Cornett J, Whiteford H, Saxena S (2019) New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. The Lancet 394:240–248

    Article  Google Scholar 

  9. Béjot Y, Yaffe K (2019) Ageing population: a neurological challenge. Neuroepidemiology 52:76–77

    Article  PubMed  Google Scholar 

  10. Agnello L, Ciaccio M (2022) Neurodegenerative diseases: from molecular basis to therapy. Int J Mol Sci 23:12854

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baranov SV, Jauhari A, Carlisle DL, Friedlander RM (2021) Two hit mitochondrial-driven model of synapse loss in neurodegeneration. Neurobiol Diset 158:105451

    Article  CAS  Google Scholar 

  12. Barry J, Bui MTN, Levine MS, Cepeda C (2022) Synaptic pathology in Huntington’s disease: beyond the corticostriatal pathway. Neurobiol Dis 162:105574

    Article  CAS  PubMed  Google Scholar 

  13. Behl T, Makkar R, Sehgal A, Singh S, Sharma N, Zengin G et al (2021) Current trends in neurodegeneration: cross talks between oxidative stress, cell death, and inflammation. Int J Mol Sci 22:7432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berdenis van Berlekom A, Muflihah CH, Snijders GJLJ, MacGillavry HD, Middeldorp J, Hol EM et al (2020) Synapse pathology in schizophrenia: a meta-analysis of postsynaptic elements in postmortem brain studies. Schizophr Bull 46:374–86

    PubMed  Google Scholar 

  15. DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14:32

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9:a028035

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shu Y, Su Q, Liao S, Lu T, Li R, Sun X et al (2017) Low serum vitamin D levels and anti-N-methyl-D-aspartate receptor encephalitis: a case-control study. Neurochem Int 102:89–94

    Article  CAS  PubMed  Google Scholar 

  18. Shen W, Zhai S, Surmeier DJ (2022) Striatal synaptic adaptations in Parkinson’s disease. Neurobiol Dis 167:105686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stork C, Renshaw PF (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10:900–919

    Article  CAS  PubMed  Google Scholar 

  20. Wang G, Yin P, Zhang W, Giulietta Fernandez C, Xu X Editorial (2022) The relationship of neuroinflammation with aging and neurodegenerative diseases. Front Aging Neurosci 14:1102613

  21. Wilson DM, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I (2023) Hallmarks of neurodegenerative diseases. Cell 186:693–714

    Article  CAS  PubMed  Google Scholar 

  22. Wingo TS, Liu Y, Gerasimov ES, Vattathil SM, Wynne ME, Liu J et al (2022) Shared mechanisms across the major psychiatric and neurodegenerative diseases. Nat Commun 13:4314

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao B, Schwartz JP (1998) Involvement of cytokines in normal CNS development and neurological diseases: recent progress and perspectives. J Neurosci Res 52:7–16

    Article  CAS  PubMed  Google Scholar 

  24. Yang S, Park JH, Lu H-C (2023) Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener 18:49

    Article  PubMed  PubMed Central  Google Scholar 

  25. Divo MJ, Martinez CH, Mannino DM (2014) Ageing and the epidemiology of multimorbidity. Eur Respir J 44:1055–1068

    Article  PubMed  PubMed Central  Google Scholar 

  26. Weickenmeier J (2023) Exploring the multiphysics of the brain during development, aging, and in neurological diseases. Brain Multiphysics 4:100068

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dumurgier J, Tzourio C (2020) Epidemiology of neurological diseases in older adults. Rev Neurol (Paris) 176:642–648

    Article  CAS  PubMed  Google Scholar 

  28. Rehman MU, Wali AF, Ahmad A, Shakeel S, Rasool S, Ali R et al (2019) Neuroprotective strategies for neurological disorders by natural products: an update. Curr Neuropharmacol 17:247–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rehman MU, Sehar N, Dar NJ, Khan A, Arafah A, Rashid S et al (2023) Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: an update on current advances and impediments. Neurosci Biobehav Rev 144:104961

    Article  CAS  PubMed  Google Scholar 

  30. Eyles D, Brown J, Mackay-Sim A, McGrath J, Feron F (2003) Vitamin D3 and brain development. Neuroscience 118:641–653

    Article  CAS  PubMed  Google Scholar 

  31. Cesari M, Incalzi RA, Zamboni V, Pahor M (2011) The vitamin D hormone: a multitude of actions potentially influencing the physical function decline in older persons. Geriatr Gerontol Int 11:133–142

    Article  PubMed  Google Scholar 

  32. Bouillon R, Carmeliet G, Lieben L, Watanabe M, Perino A, Auwerx J et al (2014) Vitamin D and energy homeostasis: of mice and men. Nat Rev Endocrinol 10:79–87

    Article  CAS  PubMed  Google Scholar 

  33. Bouillon R, Manousaki D, Rosen C, Trajanoska K, Rivadeneira F, Richards JB (2022) The health effects of vitamin D supplementation: evidence from human studies. Nat Rev Endocrinol 18:96–110

    Article  CAS  PubMed  Google Scholar 

  34. Latimer CS, Brewer LD, Searcy JL, Chen K-C, Popović J, Kraner SD et al (2014) Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proc Natl Acad Sci U S A 111:E4359-4366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mohamed AR, Soliman GY, Ismail CA, Mannaa HF (2015) Neuroprotective role of vitamin D3 in colchicine-induced Alzheimer’s disease in rats. Alex J Med 51:127–136

    Google Scholar 

  36. Berridge MJ (2017) Vitamin D deficiency accelerates ageing and age-related diseases: a novel hypothesis. J Physiol 595:6825–6836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lima LAR, Lopes MJP, Costa RO, Lima FAV, Neves KRT, Calou IBF et al (2018) Vitamin D protects dopaminergic neurons against neuroinflammation and oxidative stress in hemiparkinsonian rats. J Neuroinflammation 15:249

    Article  PubMed  PubMed Central  Google Scholar 

  38. Koshkina A, Dudnichenko T, Baranenko D, Fedotova J, Drago F (2019) Effects of vitamin D3 in long-term ovariectomized rats subjected to chronic unpredictable mild stress: BDNF, NT-3, and NT-4 implications. Nutrients 11:1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mayne PE, Burne THJ (2019) Vitamin D in synaptic plasticity, cognitive function, and neuropsychiatric illness. Trends Neurosci 42:293–306

    Article  CAS  PubMed  Google Scholar 

  40. Alamro AA, Alsulami EA, Almutlaq M, Alghamedi A, Alokail M, Haq SH (2020) Therapeutic potential of vitamin D and curcumin in an in vitro model of Alzheimer disease. J Cent Nerv Syst Dis 12:1179573520924311

    Article  PubMed  PubMed Central  Google Scholar 

  41. de Oliveira LRC, Mimura LAN, Fraga-Silva TF de C, Ishikawa LLW, Fernandes AAH, Zorzella-Pezavento SFG et al (2020) Calcitriol prevents neuroinflammation and reduces blood-brain barrier disruption and local macrophage/microglia activation. Front Pharmacol 11:161

  42. Eyles DW (2021) Vitamin D: brain and behavior. JBMR Plus 5:e10419

    Article  CAS  PubMed  Google Scholar 

  43. Neriman A, Hakan Y, Ozge U (2021) The psychotropic effect of vitamin D supplementation on schizophrenia symptoms. BMC Psychiatry 21:309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smolders J, Hiller A, Camu W (2021) Editorial: Vitamin D in neurological diseases from pathophysiology to therapy. Front Neurol 12:614900

  45. Araújo de Lima L, Oliveira Cunha PL, Felicio Calou IB, Tavares Neves KR, Facundo HT, de Barros S, Viana G (2022) Effects of vitamin D (VD3) supplementation on the brain mitochondrial function of male rats, in the 6-OHDA-induced model of Parkinson’s disease. Neurochem Int 154:105280

    Article  PubMed  Google Scholar 

  46. Manjari SKV, Maity S, Poornima R, Yau S-Y, Vaishali K, Stellwagen D et al (2022) Restorative action of vitamin D3 on motor dysfunction through enhancement of neurotrophins and antioxidant expression in the striatum. Neurosci 492:67-81

  47. Manjari S, Abraham SM, Poornima R, Chaturvedi RK, Maity S, Komal P (2023) Unprecedented effect of vitamin D3 on T-cell receptor beta subunit and alpha7 nicotinic acetylcholine receptor expression in a 3-nitropropionic acid induced mouse model of Huntington’s disease. IBRO Neurosci Rep 15:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pignolo A, Mastrilli S, Davì C, Arnao V, Aridon P, dos Santos Mendes FA et al (2022) Vitamin D and Parkinson’s disease. Nutrients 14:1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bivona G, Agnello L, Bellia C, Iacolino G, Scazzone C, Lo Sasso B et al (2019) Non-skeletal activities of vitamin D: from physiology to brain pathology. Medicina (Mex) 55:341

    Article  Google Scholar 

  50. Anjum I, Jaffery SS, Fayyaz M, Samoo Z, Anjum S (2023) The role of vitamin D in brain health: a mini literature review. Cureus 10:e2960

    Google Scholar 

  51. Hashemi R, Morshedi M, Jafarabadi MA, Altafi D, Hosseini-Asl SS, Rafie-Arefhosseini S (2018) Anti-inflammatory effects of dietary vitamin D3 in patients with multiple sclerosis. Neurol Genet 4:e278

  52. Berridge MJ (2016) Vitamin D, reactive oxygen species and calcium signalling in ageing and disease. Philos Trans R Soc B Biol Sci 371:20150434

    Article  Google Scholar 

  53. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF et al (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29:726–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu Y, Liang L (2021) Vitamin D3/vitamin D receptor signaling mitigates symptoms of post-stroke depression in mice by upregulating hippocampal BDNF expression. Neurosci Res 170:306–313

    Article  CAS  PubMed  Google Scholar 

  55. Ricca C, Aillon A, Bergandi L, Alotto D, Castagnoli C, Silvagno F (2018) Vitamin D receptor is necessary for mitochondrial function and cell health. Int J Mol Sci 19:1672

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sakai S, Suzuki M, Tashiro Y, Tanaka K, Takeda S, Aizawa K et al (2015) Vitamin D receptor signaling enhances locomotive ability in mice. J Bone Miner Res 30:128–136

    Article  CAS  PubMed  Google Scholar 

  57. Zmijewski MA, Carlberg C (2020) Vitamin D receptor(s): in the nucleus but also at membranes? Exp Dermatol 29:876–884

    Article  CAS  PubMed  Google Scholar 

  58. Zmijewski MA (2019) Vitamin D and human health. Int J Mol Sci 20:145

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yuan J, Guo X, Liu Z, Zhao X, Feng Y, Song S et al (2018) Vitamin D receptor activation influences the ERK pathway and protects against neurological deficits and neuronal death. Int J Mol Med 41:364–372

    CAS  PubMed  Google Scholar 

  60. Cui X, Eyles DW (2022) Vitamin D and the central nervous system: causative and preventative mechanisms in brain disorders. Nutrients 14:4353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Przedborski S, Vila M, Jackson-Lewis V (2003) Series introduction: neurodegeneration: what is it and where are we? J Clin Invest 111:3–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fantini C, Corinaldesi C, Lenzi A, Migliaccio S, Crescioli C (2023) Vitamin D as a shield against aging. Int J Mol Sci 24:4546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Terock J, Bonk S, Frenzel S, Wittfeld K, Garvert L, Hosten N et al (2022) Vitamin D deficit is associated with accelerated brain aging in the general population. Psychiatry Res Neuroimaging 327:111558

    Article  PubMed  Google Scholar 

  64. Fullard ME, Duda JE (2020) A review of the relationship between vitamin D and Parkinson disease symptoms. Front Neurol 11:454

  65. Soliman RH, Oraby MI, Hussein M, Abd El-Shafy S, Mostafa S (2019) Could vitamin D deficiency have an impact on motor and cognitive function in Parkinson’s disease? Egypt J Neurol Psychiatry Neurosurg 55:34

    Article  Google Scholar 

  66. Chel VG, Ooms ME, van der Bent J, Veldkamp F, Roos RA, Achterberg WP et al (2013) High prevalence of vitamin D deficiency and insufficiency in patients with manifest Huntington disease. Dermatoendocrinol 5:348–351

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chai B, Gao F, Wu R, Dong T, Gu C, Lin Q et al (2019) Vitamin D deficiency as a risk factor for dementia and Alzheimer’s disease: an updated meta-analysis. BMC Neurol 19:284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Holick MF (2018) The global D-Lemma: the vitamin D deficiency pandemic even in sun-drenched countries. J Clin Sci Res 7:101

    Article  Google Scholar 

  69. Terock J, Bonk S, Frenzel S et al (2022) Vitamin D deficit is associated with accelerated brain aging in the general population. Psychiatry Res Neuroimaging 327:111558

  70. Chen L, Yang R, Qiao W, Zhang W, Chen J, Mao L et al (2019) 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. Aging Cell 18:e12951

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dursun E, Gezen-Ak D (2017) Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin. PLoS ONE 12:e0188605

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lasoń W, Jantas D, Leśkiewicz M, Regulska M, Basta-Kaim A (2023) The vitamin D receptor as a potential target for the treatment of age-related neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases: a narrative review. Cells 12:660

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bankole O, Laoye B, Sirajo MU, Ishola A, Oyeleke E, Balogun W et al (2015) Vitamin D 3 receptor activation rescued corticostriatal neural activity and improved motor function in –D 2 R tardive dyskinesia mice model. J Biomed Sci Eng. 8:520–30

    Article  CAS  Google Scholar 

  74. Hii CS, Ferrante A (2016) The non-genomic actions of vitamin D. Nutrients 8:135

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang W, Li Y, Meng X (2023) Vitamin D and neurodegenerative diseases. Heliyon 9:e12877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yarlagadda K, Ma N, Doré S (2020) Vitamin D and stroke: effects on incidence, severity, and outcome and the potential benefits of supplementation. Front Neurol 11:384

  77. Ghahremani M, Smith EE, Chen H-Y et al (2023) Vitamin D supplementation and incident dementia: effects of sex, APOE, and baseline cognitive status. Alzheimer’s & dementia: diagnosis, assessment & disease monitoring 15:e12404

    Google Scholar 

  78. McCollum EV, Simmonds N, Becker JE, Shipley PG (1922) Studies on experimental rickets: an experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem 53:293–312

    Article  CAS  Google Scholar 

  79. Hess AF, Weinstock M (1924) Antirachitic properties imparted to inert fluids and to green vegetables by ultra-violet irradiation. J Biol Chem 62:301–313

    Article  CAS  Google Scholar 

  80. Jones G (2022) 100 years of Vitamin D: historical aspects of vitamin D. Endocr Connect 11:e210594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Windans A, Bock F (1936) Über das Provitamin aus dem Sterin der Schweineschwarte 245:168–170

    Google Scholar 

  82. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G (2016) Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 96:365–408

    Article  CAS  PubMed  Google Scholar 

  83. Holick MF (1981) The cutaneous photosynthesis of previtamin D3: a unique photoendocrine system. J Invest Dermatol 77:51–58

    Article  CAS  PubMed  Google Scholar 

  84. Jones G, Prosser DE, Kaufmann M (2014) Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res 55:13–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Norlin M, Wikvall K (2023) Enzymatic activation in vitamin D signaling - past, present and future. Arch Biochem Biophys 742:109639

    Article  CAS  PubMed  Google Scholar 

  86. Cheng JB, Motola DL, Mangelsdorf DJ, Russell DW (2003) De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxilase. J Biol Chem 278:38084–38093

    Article  CAS  PubMed  Google Scholar 

  87. Seuter S, Ryynänen J, Carlberg C (2014) The ASAP2 gene is a primary target of 1,25-dihydroxyvitamin D3 in human monocytes and macrophages. J Steroid Biochem Mol Biol 144(Pt A):12–8

    Article  CAS  PubMed  Google Scholar 

  88. Cui X, Gooch H, Petty A, McGrath JJ, Eyles D (2017) Vitamin D and the brain: genomic and non-genomic actions. Mol Cell Endocrinol 453:131–143

    Article  CAS  PubMed  Google Scholar 

  89. Ekimoto T, Kudo T, Yamane T, Ikeguchi M (2021) Mechanism of vitamin D receptor ligand-binding domain regulation studied by gREST simulations. J Chem Inf Model 61:3625–3637

    Article  CAS  PubMed  Google Scholar 

  90. Cui X, Pertile R, Eyles DW (2018) The vitamin D receptor (VDR) binds to the nuclear matrix via its hinge domain: a potential mechanism for the reduction in VDR mediated transcription in mitotic cells. Mol Cell Endocrinol 472:18–25

    Article  CAS  PubMed  Google Scholar 

  91. Eyles DW (2020) Vitamin D: brain and behavior. JBMR Plus 5:e10419

    Article  PubMed  PubMed Central  Google Scholar 

  92. de Angelis C, Galdiero M, Pivonello C, Garifalos F, Menafra D, Cariati F et al (2017) The role of vitamin D in male fertility: a focus on the testis. Rev Endocr Metab Disord 18:285–305

  93. Habib AM, Nagi K, Thillaiappan NB, Sukumaran V, Akhtar S (2020) Vitamin D and its potential interplay with pain signaling pathways. Front Immunol 11:820

  94. Bikle DD (2021) Ligand-independent actions of the vitamin D receptor: more questions than answers. JBMR Plus 1:211-216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Doroudi M, Schwartz Z, Boyan BD (2012) Phospholipase A2 activating protein is required for 1α,25-dihydroxyvitamin D3 dependent rapid activation of protein kinase C via Pdia3. J Steroid Biochem Mol Biol 132:48–56

    Article  CAS  PubMed  Google Scholar 

  96. Zaulkffali AS, Md Razip NN, Syed Alwi SS, Abd Jalil A, Abd Mutalib MS, Gopalsamy B et al (2019) Vitamins D and E stimulate the PI3K-AKT signalling pathway in insulin-resistant SK-N-SH neuronal cells. Nutrients 11:2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mizwicki MT, Menegaz D, Yaghmaei S, Henry HL, Norman AW (2010) A molecular description of ligand binding to the two overlapping binding pockets of the nuclear vitamin D receptor (VDR): structure-function implications. J Steroid Biochem Mol Biol 121:98–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Warwick T, Schulz MH, Günther S, Gilsbach R, Neme A, Carlberg C et al (2021) A hierarchical regulatory network analysis of the vitamin D induced transcriptome reveals novel regulators and complete VDR dependency in monocytes. Sci Rep 11:6518

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Alvarez N, Aguilar-Jimenez W, Rugeles MT (2019) The potential protective role of vitamin D supplementation on HIV-1 infection. Front Immunol 10:2291

  100. Varghese JE, Balasubramanian B, Velayuthaprabhu S, Thirunavukkarasu V, Rengarajan RL, Murugesh E et al (2021) Therapeutic effects of vitamin D and cancer: an overview. Food Front Intern 2:417–25

    Article  CAS  Google Scholar 

  101. Walker MD, Bilezikian JP (2017) Vitamin D and primary hyperparathyroidism: more insights into a complex relationship. Endocrine 55:3–5

    Article  CAS  PubMed  Google Scholar 

  102. Nakashima A, Yokoyama K, Yokoo T, Urashima M (2016) Role of vitamin D in diabetes mellitus and chronic kidney disease. World J Diabetes 7:89–100

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lemire JM, Archer DC (1991) 1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J Clin Invest 87:1103–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Koduah P, Paul F, Dörr J-M (2017) Vitamin D in the prevention, prediction and treatment of neurodegenerative and neuroinflammatory diseases. EPMA J 8:313–325

    Article  PubMed  PubMed Central  Google Scholar 

  105. Morello M, Landel V, Lacassagne E, Baranger K, Annweiler C, Féron F et al (2018) Vitamin D improves neurogenesis and cognition in a mouse model of Alzheimer’s disease. Mol Neurobiol 55:6463–6479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Munger KL, Zhang SM, O’Reilly E, Hernán MA, Olek MJ, Willett WC et al (2004) Vitamin D intake and incidence of multiple sclerosis. Neurology 62:60–65

    Article  CAS  PubMed  Google Scholar 

  107. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A (2006) Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296:2832–2838

    Article  CAS  PubMed  Google Scholar 

  108. Feige J, Moser T, Bieler L, Schwenker K, Hauer L, Sellner J (2020) Vitamin D supplementation in multiple sclerosis: a critical analysis of potentials and threats. Nutrients 12:783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gandhi F, Jhaveri S, Avanthika C, Singh A, Jain N, Gulraiz A et al (2023) Impact of vitamin D supplementation on multiple sclerosis. Cureus 13:e18487

    Google Scholar 

  110. Hiller AL, Murchison CF, Lobb BM, O’Connor S, O’Connor M, Quinn JF (2018) A randomized, controlled pilot study of the effects of vitamin D supplementation on balance in Parkinson’s disease: does age matter? PLoS ONE 13:e0203637

    Article  PubMed  PubMed Central  Google Scholar 

  111. Jia J, Hu J, Huo X, Miao R, Zhang Y, Ma F (2019) Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: a randomised, double-blind, placebo-controlled trial. J Neurol Neurosurg Psychiatry 90:1347–1352

    PubMed  Google Scholar 

  112. Jia Q, Li S, Li X-J, Yin P (2022) Neuroinflammation in Huntington’s disease: from animal models to clinical therapeutics. Front Immunol 13:1088124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Annweiler C (2016) Vitamin D in dementia prevention. Ann N Y Acad Sci 1367:57–63

    Article  ADS  CAS  PubMed  Google Scholar 

  114. Annweiler C, Beauchet O (2011) Vitamin D-mentia: randomized clinical trials should be the next step. Neuroepidemiology 37:249–258

    Article  PubMed  Google Scholar 

  115. Annweiler C, Schott A-M, Berrut G, Chauviré V, Le Gall D, Inzitari M et al (2010) Vitamin D and ageing: neurological issues. Neuropsychobiology 62:139–150

    Article  CAS  PubMed  Google Scholar 

  116. Anwar MJ, Alenezi SK, Alhowail AH (2023) Molecular insights into the pathogenic impact of vitamin D deficiency in neurological disorders. Biomed Pharmacother Biomedecine Pharmacother 162:114718

    Article  CAS  Google Scholar 

  117. Singh P, Mishra G, Molla M, Shumet Yimer Y, Sisay W, Andargie Y et al (2022) Dietary and nutraceutical-based therapeutic approaches to combat the pathogenesis of Huntington’s disease. J Funct Foods 92:105047

    Article  CAS  Google Scholar 

  118. Yamini P, Ray RS, Chopra K (2018) Vitamin D3 attenuates cognitive deficits and neuroinflammatory responses in ICV-STZ induced sporadic Alzheimer’s disease. Inflammopharmacology 26:39–55

    Article  CAS  PubMed  Google Scholar 

  119. Mehrabadi S, Sadr SS (2020) Administration of Vitamin D3 and E supplements reduces neuronal loss and oxidative stress in a model of rats with Alzheimer’s disease. Neurol Res 42:862–868

    Article  CAS  PubMed  Google Scholar 

  120. Patel P, Shah J (2022) Vitamin D3 supplementation ameliorates cognitive impairment and alters neurodegenerative and inflammatory markers in scopolamine induced rat model. Metab Brain Dis 37:2653–2667

    Article  CAS  PubMed  Google Scholar 

  121. Magdy A, Farrag EAE, Hamed SM, Abdallah Z, El Nashar EM, Alghamdi MA et al (2022) Neuroprotective and therapeutic effects of calcitriol in rotenone-induced Parkinson’s disease rat model. Front Cell Neurosci 16:967813

  122. Calvello R, Cianciulli A, Nicolardi G, De Nuccio F, Giannotti L, Salvatore R et al (2017) Vitamin D treatment attenuates neuroinflammation and dopaminergic neurodegeneration in an animal model of Parkinson’s disease, shifting M1 to M2 microglia responses. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol 12:327–339

    Article  Google Scholar 

  123. Fort Molnár M, Török R, Sümegi E, Vécsei L, Klivényi P, Szalárdy L (2016) High-dose 1,25-dihydroxyvitamin D supplementation elongates the lifespan of Huntington’s disease transgenic mice. Acta Neurobiol Exp (Warsz) 76:176–81

    Article  Google Scholar 

  124. Komal P, Manjari SKV, Nashmi R (2022) An opinion on the debatable function of brain resident immune protein, T-cell receptor beta subunit in the central nervous system. IBRO Neurosci Rep 13:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Landel V, Annweiler C, Millet P, Morello M, Féron F, Vitamin D (2016) Cognition and Alzheimer’s disease: the therapeutic benefit is in the D-tails. J Alzheimers Dis JAD 53:419–444

    Article  CAS  PubMed  Google Scholar 

  126. Boucher BJ (2012) The problems of vitamin D insufficiency in older people. Aging Dis 3:313–329

    PubMed  PubMed Central  Google Scholar 

  127. Goodwill AM, Szoeke C (2017) A systematic review and meta-analysis of the effect of low vitamin D on cognition. J Am Geriatr Soc 65:2161–2168

    Article  PubMed  Google Scholar 

  128. Sultan S, Taimuri U, Basnan SA, Ai-Orabi WK, Awadallah A, Almowald F et al (2020) Low vitamin D and its association with cognitive impairment and dementia. J Aging Res 2020:1–10

    Article  Google Scholar 

  129. Gaughran F, Stringer D, Wojewodka G, Landau S, Smith S, Gardner-Sood P et al (2021) Effect of vitamin D supplementation on outcomes in people with early psychosis: the DFEND randomized clinical trial. JAMA Netw Open 4:e2140858

    Article  PubMed  PubMed Central  Google Scholar 

  130. Khadilkar A, Kajale N, Oza C, Oke R, Gondhalekar K, Patwardhan V et al (2022) Vitamin D status and determinants in Indian children and adolescents: a multicentre study. Sci Rep 12:16790

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Holick MF, Chen TC (2008) Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr 87:1080S-1086S

    Article  CAS  PubMed  Google Scholar 

  132. Holick MF, Vitamin D (2009) Status: measurement, interpretation and clinical application. Ann Epidemiol 19:73–78

    Article  PubMed  Google Scholar 

  133. Dawson-Hughes B, Mithal A, Bonjour J-P, Boonen S, Burckhardt P, Fuleihan GE-H et al (2010) IOF position statement: vitamin D recommendations for older adults. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 21:1151–4

    Article  CAS  Google Scholar 

  134. Azam S, Haque MdE, Balakrishnan R, Kim I-S, Choi D-K (2021) The ageing brain: molecular and cellular basis of neurodegeneration. Front Cell Dev Biol 9:683459

  135. Banerjee A, Khemka VK, Ganguly A, Roy D, Ganguly U, Chakrabarti S (2015) Vitamin D and Alzheimer’s disease: neurocognition to therapeutics. Int J Alzheimers Dis 2015:1–11

    Article  Google Scholar 

  136. Somoza-Moncada MM, Turrubiates-Hernández FJ, Muñoz-Valle JF, Gutiérrez-Brito JA, Díaz-Pérez SA, Aguayo-Arelis A et al (2023) Vitamin D in depression: a potential bioactive agent to reduce suicide and suicide attempt risk. Nutrients 15:1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Almeras L, Eyles D, Benech P, Laffite D, Villard C, Patatian A et al (2007) Developmental vitamin D deficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics 7:769–780

    Article  CAS  PubMed  Google Scholar 

  138. Banerjee P, Chatterjee M (2003) Antiproliferative role of vitamin D and its analogs–a brief overview. Mol Cell Biochem 253:247–254

    Article  CAS  PubMed  Google Scholar 

  139. Groves NJ, Kesby JP, Eyles DW, McGrath JJ, Mackay-Sim A, Burne THJ (2013) Adult vitamin D deficiency leads to behavioural and brain neurochemical alterations in C57BL/6J and BALB/c mice. Behav Brain Res 241:120–131

    Article  CAS  PubMed  Google Scholar 

  140. Kasatkina L, Tarasenko A, Krupko O, Kuchmerovska T, Lisakovska O, Trikash I (2019) Vitamin D deficiency induces the excitation/inhibition brain imbalance and the proinflammatory shift. Int J Biochem Cell Biol 119:105665

    Article  PubMed  Google Scholar 

  141. Kim HK, Andreazza AC, Yeung PY, Isaacs-Trepanier C, Young LT (2014) Oxidation and nitration in dopaminergic areas of the prefrontal cortex from patients with bipolar disorder and schizophrenia. J Psychiatry Neurosci JPN 39:276–285

    Article  PubMed  Google Scholar 

  142. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ (2005) Distribution of the vitamin D receptor and 1α-hydroxylase in human brain. J Chem Neuroanat 29:21–30

    Article  CAS  PubMed  Google Scholar 

  143. Van Cromphaut SJ, Dewerchin M, Hoenderop JGJ, Stockmans I, Van Herck E, Kato S et al (2001) Duodenal calcium absorption in vitamin D receptor–knockout mice: functional and molecular aspects. Proc Natl Acad Sci 98:13324–13329

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  144. Burne THJ, McGrath JJ, Eyles DW, Mackay-Sim A (2005) Behavioural characterization of vitamin D receptor knockout mice. Behav Brain Res 157:299–308

    Article  CAS  PubMed  Google Scholar 

  145. Christakos S, Seth T, Hirsch J, Porta A, Moulas A, Dhawan P (2013) Vitamin D biology revealed through the study of knockout and transgenic mouse models. Annu Rev Nutr 33:71–85

    Article  CAS  PubMed  Google Scholar 

  146. Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y et al (1997) Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 16:391–396

    Article  CAS  PubMed  Google Scholar 

  147. Gezen-Ak D, Dursun E, Yilmazer S (2011) The effects of vitamin D receptor silencing on the expression of LVSCC-A1C and LVSCC-A1D and the release of NGF in cortical neurons. PLoS ONE 6:e17553

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S (2010) Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 70:271–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Duarte Azevedo M, Sander S, Tenenbaum L (2020) GDNF, A NEURON-DERIVED FACTOR UPREGULATED IN GLIAL CELLS DURING DISEASE. J Clin Med 9:456

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wion D, Macgrogan D, Neveu I, Jehan F, Houlgatte R, Brachet P (1991) 1,25-Dihydroxyvitamin D3 is a potent inducer of nerve growth factor synthesis. J Neurosci Res 28:110–114

    Article  CAS  PubMed  Google Scholar 

  151. Naveilhan P, Neveu I, Wion D, Brachet P (1996) 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. NeuroReport 7:2171–2175

    Article  CAS  PubMed  Google Scholar 

  152. Baydyuk M, Xu B (2014) BDNF signaling and survival of striatal neurons. Front Cell Neurosci 8:254

    Article  PubMed  PubMed Central  Google Scholar 

  153. Abiri B, Vafa M (2020) Effects of vitamin D and/or magnesium supplementation on mood, serum levels of BDNF, inflammatory biomarkers, and SIRT1 in obese women: a study protocol for a double-blind, randomized, placebo-controlled trial. Trials 21:225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kowiański P, Lietzau G, Czuba E, Waśkow M, Steliga A, Moryś J (2018) BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 38:579–593

    Article  PubMed  Google Scholar 

  155. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138:155–175

    Article  CAS  PubMed  Google Scholar 

  156. Brown J, Bianco JI, McGrath JJ, Eyles DW (2003) 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett 343:139–143

    Article  CAS  PubMed  Google Scholar 

  157. Cornet A, Baudet C, Neveu I, Baron-Van Evercooren A, Brachet P, Naveilhan P (1998) 1,25-dihydroxyvitamin D3 regulates the expression of VDR and NGF gene in Schwann cells in vitro. J Neurosci Res 53:742–746

    Article  CAS  PubMed  Google Scholar 

  158. Nadimi H, Djazayery A, Javanbakht MH, Dehpour A, Ghaedi E, Derakhshanian H et al (2020) Effect of vitamin D supplementation on CREB-TrkB-BDNF pathway in the hippocampus of diabetic rats. Iran J Basic Med Sci 23:117–123

    PubMed  PubMed Central  Google Scholar 

  159. Alsulami E, Alokail M, Alghamedi A, Alamro A, Haq S (2020) Effect of vitamin D treatment on VDR expression in primary cerebral cortical cells in induced oxidative stress. J Cell Biotechnol 6:81–90

    Article  Google Scholar 

  160. Pertile RAN, Cui X, Hammond L, Eyles DW (2018) Vitamin D regulation of GDNF/Ret signaling in dopaminergic neurons. FASEB J Off Publ Fed Am Soc Exp Biol 32:819–828

    CAS  Google Scholar 

  161. Bao Z, Wang X, Li Y, Feng F (2020) Vitamin D alleviates cognitive dysfunction by activating the VDR/ERK1/2 signaling pathway in an Alzheimer’s disease mouse model. NeuroImmunoModulation 27:178–185

    Article  CAS  PubMed  Google Scholar 

  162. Haussler MR, Haussler CA, Whitfield GK, Hsieh J-C, Thompson PD, Barthel TK et al (2010) The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the “Fountain of Youth” to mediate healthful aging. J Steroid Biochem Mol Biol 121:88–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Pérez-Navarro E, Canudas AM, Akerund P, Alberch J, Arenas E (2000) Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 prevent the death of striatal projection neurons in a rodent model of Huntington’s disease. J Neurochem 75:2190–2199

    Article  PubMed  Google Scholar 

  164. Lee PW, Selhorst A, Lampe SG, Liu Y, Yang Y, Lovett-Racke AE (2020) Neuron-specific vitamin D signaling attenuates microglia activation and CNS autoimmunity. Front Neurol 11:19

  165. Mazzetti S, Barichella M, Giampietro F, Giana A, Calogero AM, Amadeo A et al (2022) Astrocytes expressing vitamin D-activating enzyme identify Parkinson’s disease. CNS Neurosci Ther 28:703–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Jiao K-P, Li S-M, Lv W-Y, Jv M-L, He H-Y (2017) Vitamin D3 repressed astrocyte activation following lipopolysaccharide stimulation in vitro and in neonatal rats. NeuroReport 28:492–497

    Article  CAS  PubMed  Google Scholar 

  167. Alessio N, Belardo C, Trotta MC, Paino S, Boccella S, Gargano F et al (2021) Vitamin D deficiency induces chronic pain and microglial phenotypic changes in mice. Int J Mol Sci 22:3604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Khairy EY, Attia MM (2021) Protective effects of vitamin D on neurophysiologic alterations in brain aging: role of brain-derived neurotrophic factor (BDNF). Nutr Neurosci 24:650–659

    Article  CAS  PubMed  Google Scholar 

  169. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L (2018) Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology 235:2195–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Miranda M, Morici JF, Zanoni MB, Bekinschtein P (2019) Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 13:363

  172. Gao L, Zhang Y, Sterling K, Song W (2022) Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl Neurodegener 11:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Castrén E, Antila H (2017) Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry 22:1085–1095

    Article  PubMed  PubMed Central  Google Scholar 

  174. Gibon J, Barker PA (2017) Neurotrophins and proneurotrophins: focus on synaptic activity and plasticity in the brain. Neuroscientist 23:587–604

    Article  CAS  PubMed  Google Scholar 

  175. Blesch A (2006) Neurotrophic factors in neurodegeneration. Brain Pathol 16:295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ma B, Culver BP, Baj G, Tongiorgi E, Chao MV, Tanese N (2010) Localization of BDNF mRNA with the Huntington’s disease protein in rat brain. Mol Neurodegener 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  177. Xie Y, Hayden MR, Xu B (2010) BDNF Overexpression in the Forebrain Rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci 30:14708–14718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. AlJohri R, AlOkail M, Haq SH (2019) Neuroprotective role of vitamin D in primary neuronal cortical culture. eNeurologicalSci 14:43–8

    Article  PubMed  Google Scholar 

  179. Bayo-Olugbami A, Nafiu AB, Amin A, Ogundele OM, Lee CC, Owoyele BV (2020) Vitamin D attenuated 6-OHDA-induced behavioural deficits, dopamine dysmetabolism, oxidative stress, and neuro-inflammation in mice. Nutr Neurosci 25:823–834

  180. Massa SM, Yang T, Xie Y, Shi J, Bilgen M, Joyce JN et al (2010) Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J Clin Invest 120:1774–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Atif F, Yousuf S, Sayeed I, Ishrat T, Hua F, Stein D (2012) Combination treatment with progesterone and vitamin D hormone is more effective than monotherapy in ischemic stroke: the role of BDNF/TrkB/Erk1/2 signaling in neuroprotection. Neuropharmacology 67:78–87

  182. Lu Z, Xu S (2006) ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 58:621–631

    Article  CAS  PubMed  Google Scholar 

  183. Bakhtiari-Dovvombaygi H, Izadi S, Zare M, Asgari Hassanlouei E, Dinpanah H, Ahmadi-Soleimani SM et al (2021) Vitamin D3 administration prevents memory deficit and alteration of biochemical parameters induced by unpredictable chronic mild stress in rats. Sci Rep 11:16271

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  184. Liang Q, Cai C, Duan D, Hu X, Hua W, Jiang P et al (2018) Postnatal vitamin D intake modulates hippocampal learning and memory in adult mice. Front Neurosci 12:141

  185. Gezen-Ak D, Yılmazer S, Dursun E (2014) Why vitamin D in Alzheimer’s disease? The hypothesis J Alzheimers Dis 40:257–269

    Article  CAS  PubMed  Google Scholar 

  186. Marlin MC, Li G (2015) Biogenesis and function of the NGF/TrkA signaling endosome. Int Rev Cell Mol Biol 314:239–257

    Article  CAS  PubMed  Google Scholar 

  187. Yang H, Wang L, Zang C, Wang Y, Shang J, Zhang Z et al (2020) Src inhibition attenuates neuroinflammation and protects dopaminergic neurons in Parkinson’s disease models. Front Neurosci 14:45

  188. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc B Biol Sci 361:1545–1564

    Article  CAS  Google Scholar 

  189. Minnone G, De Benedetti F, Bracci-Laudiero L (2017) NGF and its receptors in the regulation of inflammatory response. Int J Mol Sci 18:1028

    Article  PubMed  PubMed Central  Google Scholar 

  190. Naveilhan P, Neveu I, Baudet C, Funakoshi H, Wion D, Brachet P et al (1996) 1,25-Dihydroxyvitamin D3 regulates the expression of the low-affinity neurotrophin receptor. Mol Brain Res 41:259–268

    Article  CAS  PubMed  Google Scholar 

  191. Shirazi HA, Rasouli J, Ciric B, Rostami A, Zhang G-X (2015) 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation. Exp Mol Pathol 98:240–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Proenca CC, Song M, Lee FS (2016) Differential effects of BDNF and neurotrophin 4 (NT4) on endocytic sorting of TrkB receptors. J Neurochem 138:397–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Khan N, Smith M (2015) Neurotrophins and neuropathic pain: role in pathobiology. Molecules 20:10657–10688

  194. Yan Z, Shi X, Wang H, Si C, Liu Q, Du Y (2021) Neurotrophin-3 promotes the neuronal differentiation of BMSCs and improves cognitive function in a rat model of Alzheimer’s disease. Front Cell Neurosci 15:629356

  195. Lara-Rodarte R, Cortés D, Soriano K, Carmona F, Rocha L, Estudillo E et al (2021) Mouse embryonic stem cells expressing gdnf show enhanced dopaminergic differentiation and promote behavioral recovery after grafting in Parkinsonian rats. Front Cell Dev Biol 9:661656

  196. Gattei V, Celetti A, Cerrato A, Degan M, De Iuliis A, Rossi FM et al (1997) Expression of the RET receptor tyrosine kinase and GDNFR-α in normal and leukemic human hematopoietic cells and stromal cells of the bone marrow microenvironment. Blood 89:2925–2937

    CAS  PubMed  Google Scholar 

  197. Stanga S, Brambilla L, Tasiaux B, Dang AH, Ivanoiu A, Octave J-N et al (2018) A role for GDNF and soluble APP as biomarkers of amyotrophic lateral sclerosis pathophysiology. Front Neurol 9:384

  198. Bahlakeh G, Rahbarghazi R, Mohammadnejad D, Elahi A, Karimipour M (2021) Current knowledge and challenges associated with targeted delivery of neurotrophic factors into the central nervous system; focus on available approaches. Cell Biosci 11:181

  199. Goldberg P (1974) Multiple sclerosis: vitamin D and calcium as environmental determinants of prevalence. Int J Environ Stud 6:121–129

    Article  CAS  Google Scholar 

  200. Mark KA, Dumas KJ, Bhaumik D, Schilling B, Davis S, Oron TR et al (2016) Vitamin D Promotes Protein Homeostasis And Longevity Via The Stress Response Pathway Genes skn-1, ire-1, and xbp-1. Cell Rep 17:1227–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Durk MR, Han K, Chow ECY, Ahrens R, Henderson JT, Fraser PE et al (2014) 1α,25-Dihydroxyvitamin D3 reduces cerebral amyloid-β accumulation and improves cognition in mouse models of Alzheimer’s disease. J Neurosci Off J Soc Neurosci 34:7091–7101

    Article  CAS  Google Scholar 

  202. Gezen-Ak D, Alaylıoğlu M, Yurttaş Z, Çamoğlu T, Şengül B, İşler C et al (2023) Vitamin D receptor regulates transcription of mitochondrial DNA and directly interacts with mitochondrial DNA and TFAM. J Nutr Biochem 116:109322

    Article  CAS  PubMed  Google Scholar 

  203. Zhou Z, Zhou R, Zhang Z, Li K (2019) The association between vitamin D status, vitamin D supplementation, sunlight exposure, and Parkinson’s disease: a systematic review and meta-analysis. Med Sci Monit Int Med J Exp Clin Res 25:666–674

    CAS  Google Scholar 

  204. Berg D, Youdim MBH, Riederer P (2004) Redox imbalance. Cell Tissue Res 318:201–213

    Article  PubMed  Google Scholar 

  205. Rey F, Berardo C, Maghraby E, Mauri A, Messa L, Esposito L et al (2023) Redox imbalance in neurological disorders in adults and children. Antioxidants 12:965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Agnihotri A, Aruoma OI (2020) Alzheimer’s disease and Parkinson’s disease: a nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics and environmental chemicals. J Am Coll Nutr 39:16–27

    Article  CAS  PubMed  Google Scholar 

  207. Rikani AA, Choudhry Z, Choudhry AM, Rizvi N, Ikram H, Mobassarah NJ et al (2014) The mechanism of degeneration of striatal neuronal subtypes in Huntington disease. Ann Neurosci 21:112–114

    Article  PubMed  PubMed Central  Google Scholar 

  208. Rotermund C, Machetanz G, Fitzgerald JC (2018) The therapeutic potential of metformin in neurodegenerative diseases. Front Endocrinol 9:400

    Article  Google Scholar 

  209. Collin F (2019) Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int J Mol Sci 20:2407

    Article  PubMed  PubMed Central  Google Scholar 

  210. Kim TY, Leem E, Lee JM, Kim SR (2020) Control of reactive oxygen species for the prevention of Parkinson’s disease: the possible application of flavonoids. Antioxidants 9:583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Griendling KK, Sorescu D, Lassègue B, Ushio-Fukai M (2000) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20:2175–2183

    Article  CAS  PubMed  Google Scholar 

  212. Saad El-Din S, Rashed L, Medhat E, Emad Aboulhoda B, Desoky Badawy A, Mohammed ShamsEldeen A et al (2020) Active form of vitamin D analogue mitigates neurodegenerative changes in Alzheimer’s disease in rats by targeting Keap1/Nrf2 and MAPK-38p/ERK signaling pathways. Steroids 156:108586

    Article  CAS  PubMed  Google Scholar 

  213. Brandes MS, Gray NE (2020) NRF2 as a therapeutic target in neurodegenerative diseases. ASN Neuro 12:1759091419899782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. da Costa RO, Gadelha-Filho CVJ, de Aquino PEA, Lima LAR, de Lucena JD, Ribeiro WLC et al (2023) Vitamin D (VD3) Intensifies the effects of exercise and prevents alterations of behavior, brain oxidative stress, and neuroinflammation, in Hemiparkinsonian rats. Neurochem Res 48:142–160

    Article  PubMed  Google Scholar 

  215. Zhang Y, Ji W, Zhang S, Gao N, Xu T, Wang X et al (2022) Vitamin D inhibits the early aggregation of α‐synuclein and modulates exocytosis revealed by electrochemical measurements. Angew Chem Int Ed Engl 61:e202111853

  216. Shinpo K, Kikuchi S, Sasaki H, Moriwaka F, Tashiro K (2000) Effect of 1,25-dihydroxyvitamin D3 on cultured mesencephalic dopaminergic neurons to the combined toxicity caused by L-buthionine sulfoximine and 1-methyl-4-phenylpyridine. J Neurosci Res 62:374–382

    Article  CAS  PubMed  Google Scholar 

  217. Matta Reddy A, Iqbal M, Chopra H, Urmi S, Junapudi S, Bibi S et al (2022) Pivotal role of vitamin D in mitochondrial health, cardiac function, and human reproduction. Excli j 21:967–990

    PubMed  PubMed Central  Google Scholar 

  218. Onyango IG, Lu J, Rodova M, Lezi E, Crafter AB, Swerdlow RH (2010) Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim Biophys Acta BBA - Mol Basis Dis 1802:228–234

    Article  CAS  Google Scholar 

  219. Garcion E, Nataf S, Berod A, Darcy F, Brachet P (1997) 1,25-Dihydroxyvitamin D3 inhibits the expression of inducible nitric oxide synthase in rat central nervous system during experimental allergic encephalomyelitis. Mol Brain Res 45:255–267

    Article  CAS  PubMed  Google Scholar 

  220. Garcion E, Sindji L, Leblondel G, Brachet P, Darcy F (2002) 1,25-Dihydroxyvitamin D3 regulates the synthesis of γ-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J Neurochem 73:859–866

    Article  Google Scholar 

  221. Wang W, Li Y, Meng X (2023) Vitamin D and neurodegenerative diseases. Heliyon 9:e12877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Jain SK, Parsanathan R, Achari AE, Kanikarla-Marie P, Bocchini JA (2018) Glutathione stimulates vitamin D regulatory and glucose-metabolism genes, lowers oxidative stress and inflammation, and increases 25-hydroxy-vitamin D levels in blood: a novel approach to treat 25-hydroxyvitamin D deficiency. Antioxid Redox Signal 29:1792–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Brown AJ, Slatopolsky E (2008) Vitamin D analogs: therapeutic applications and mechanisms for selectivity. Mol Aspects Med 29:433–452

    Article  CAS  PubMed  Google Scholar 

  224. Taniura H, Ito M, Sanada N, Kuramoto N, Ohno Y, Nakamichi N et al (2006) Chronic vitamin D3 treatment protects against neurotoxicity by glutamate in association with upregulation of vitamin D receptor mRNA expression in cultured rat cortical neurons. J Neurosci Res 83:1179–1189

    Article  CAS  PubMed  Google Scholar 

  225. Cui C, Xu P, Li G, Qiao Y, Han W, Geng C et al (2019) Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: role of renin-angiotensin system. Redox Biol 26:101295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Jamilian H, Amirani E, Milajerdi A, Kolahdooz F, Mirzaei H, Zaroudi M et al (2019) The effects of vitamin D supplementation on mental health, and biomarkers of inflammation and oxidative stress in patients with psychiatric disorders: a systematic review and meta-analysis of randomized controlled trials. Prog Neuropsychopharmacol Biol Psychiatry 94:109651

    Article  CAS  PubMed  Google Scholar 

  227. Lin C-I, Chang Y-C, Kao N-J, Lee W-J, Cross T-W, Lin S-H (2020) 1,25(OH)2D3 Alleviates Aβ (25–35)-induced tau hyperphosphorylation, excessive reactive oxygen species, and apoptosis through interplay with glial cell line-derived neurotrophic factor signaling in SH-SY5Y cells. Int J Mol Sci 21:4215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Hu J, Wu J, Wan F, Kou L, Yin S, Sun Y et al (2021) Calcitriol Alleviates MPP+- and MPTP-induced parthanatos through the VDR/PARP1 pathway in the model of Parkinson’s disease. Front Aging Neurosci 13:657095

  229. Wareski P, Vaarmann A, Choubey V, Safiulina D, Liiv J, Kuum M et al (2009) PGC-1{alpha} and PGC-1{beta} regulate mitochondrial density in neurons. J Biol Chem 284:21379–21385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26:3169–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Hasegawa K, Yoshikawa K (2008) Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons. J Neurosci Off J Soc Neurosci 28:8772–8784

    Article  CAS  Google Scholar 

  232. Chen J, Zhou Y, Mueller-Steiner S, Chen L-F, Kwon H, Yi S et al (2005) SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 280:40364–40374

    Article  CAS  PubMed  Google Scholar 

  233. Mello-Filho AC, Meneghini R (1991) Iron is the intracellular metal involved in the production of DNA damage by oxygen radicals. Mutat Res Mol Mech Mutagen 251:109–113

    Article  CAS  Google Scholar 

  234. Zhen C, Feng X, Li Z, Wang Y, Li B, Li L et al (2015) Suppression of murine experimental autoimmune encephalomyelitis development by 1,25-dihydroxyvitamin D3 with autophagy modulation. J Neuroimmunol 280:1–7

    Article  CAS  PubMed  Google Scholar 

  235. Şahin S, Gürgen SG, Yazar U, İnce İ, Kamaşak T, Acar Arslan E et al (2019) Vitamin D protects against hippocampal apoptosis related with seizures induced by kainic acid and pentylenetetrazol in rats. Epilepsy Res 149:107–116

    Article  PubMed  Google Scholar 

  236. Uberti F, Lattuada D, Morsanuto V, Nava U, Bolis G, Vacca G et al (2014) Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. J Clin Endocrinol Metab 99:1367–1374

    Article  CAS  PubMed  Google Scholar 

  237. Kim J-S, Ryu S-Y, Yun I, Kim W-J, Lee K-S, Park J-W et al (2006) 1α,25-Dihydroxyvitamin D3 protects dopaminergic neurons in rodent models of Parkinson’s disease through inhibition of microglial activation. J Clin Neurol Seoul Korea 2:252–257

    Article  Google Scholar 

  238. Lefebvre d’Hellencourt C, Montero-Menei CN, Bernard R, Couez D (2003) Vitamin D3 inhibits proinflammatory cytokines and nitric oxide production by the EOC13 microglial cell line. J Neurosci Res 71:575–582

    Article  PubMed  Google Scholar 

  239. Doncheva N, Mihaylova A, Zlatanova H, Ivanovska M, Delev D, Murdjeva M et al (2022) Vitamin D3 exerts immunomodulatory and memory improving properties in rats with lipopolysaccharide-induced inflammation. Folia Med (Plovdiv) 64:770–781

    Article  CAS  PubMed  Google Scholar 

  240. Evans MA, Kim HA, Ling YH, Uong S, Vinh A, De Silva TM et al (2018) Vitamin D3 supplementation reduces subsequent brain injury and inflammation associated with ischemic stroke. NeuroMolecular Med 20:147–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Verma R, Kim JY (2016) 1,25-Dihydroxyvitamin D3 facilitates M2 polarization and upregulates TLR10 expression on human microglial cells. NeuroImmunoModulation 23:75–80

    Article  CAS  PubMed  Google Scholar 

  242. Nissou M-F, Guttin A, Zenga C, Berger F, Issartel J-P, Wion D (2014) Additional clues for a protective role of vitamin D in neurodegenerative diseases: 1,25-dihydroxyvitamin D3 triggers an anti-inflammatory response in brain pericytes. J Alzheimers Dis JAD 42:789–799

    Article  CAS  PubMed  Google Scholar 

  243. Galoppin M, Kari S, Soldati S, Pal A, Rival M, Engelhardt B et al (2022) Full spectrum of vitamin D immunomodulation in multiple sclerosis: mechanisms and therapeutic implications. Brain Commun 4:171

    Article  Google Scholar 

  244. Rastegar-Moghaddam SH, Hosseini M, Alipour F, Rajabian A, Ebrahimzadeh BA (2022) The effects of vitamin D on learning and memory of hypothyroid juvenile rats and brain tissue acetylcholinesterase activity and oxidative stress indicators. Naunyn Schmiedebergs Arch Pharmacol 395:337–351

    Article  CAS  PubMed  Google Scholar 

  245. Al-Zahrani YA, Sattar MAAA, Al-Harthi SE, Alkatheeri AA, Al-Zahrani YM (2021) Vitamin D3 attenuates type 3 diabetic-associated cognitive deficits in rats through regulating neurotrophins and enhancing cholinergic transmission pathway. J Pharmacol Pharmacother 12:47–53

    CAS  Google Scholar 

  246. Kumar PT, Antony S, Nandhu MS, Sadanandan J, Naijil G, Paulose CS (2011) Vitamin D3 restores altered cholinergic and insulin receptor expression in the cerebral cortex and muscarinic M3 receptor expression in pancreatic islets of streptozotocin induced diabetic rats. J Nutr Biochem 22:418–425

    Article  CAS  PubMed  Google Scholar 

  247. Rodrigues MV, Gutierres JM, Carvalho F, Lopes TF, Antunes V, da Costa P et al (2019) Protection of cholinergic and antioxidant system contributes to the effect of Vitamin D3 ameliorating memory dysfunction in sporadic dementia of Alzheimer’s type. Redox Rep Commun Free Radic Res 24:34–40

    CAS  Google Scholar 

  248. Huang Q, Liao C, Ge F, Ao J, Liu T (2022) Acetylcholine bidirectionally regulates learning and memory. J Neurorestoratology 10:100002

    Article  CAS  Google Scholar 

  249. Tata AM, Velluto L, D’Angelo C, Reale M (2014) Cholinergic system dysfunction and neurodegenerative diseases: cause or effect? CNS Neurol Disord Drug Targets 13:1294–1303

    Article  CAS  PubMed  Google Scholar 

  250. Perez-Lloret S, Barrantes FJ (2016) Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. Npj Park Dis 2:1–12

    Google Scholar 

  251. Komal P, Estakhr J, Kamran M, Renda A, Nashmi R (2015) cAMP-dependent protein kinase inhibits α7 nicotinic receptor activity in layer 1 cortical interneurons through activation of D1/D5 dopamine receptors. J Physiol 593:3513–3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Komal P, Gudavicius G, Nelson CJ, Nashmi R (2014) T-cell receptor activation decreases excitability of cortical interneurons by inhibiting α7 nicotinic receptors. J Neurosci Off J Soc Neurosci 34:22–35

    Article  CAS  Google Scholar 

  253. Winek K, Soreq H, Meisel A (2021) Regulators of cholinergic signaling in disorders of the central nervous system. J Neurochem 158:1425–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Kisby B, Jarrell JT, Agar ME, Cohen DS, Rosin ER, Cahill CM et al (2019) Alzheimer’s disease and its potential alternative therapeutics. J Alzheimers Dis Parkinsonism 9:477

  255. Caton M, Ochoa ELM, Barrantes FJ (2020) The role of nicotinic cholinergic neurotransmission in delusional thinking. Npj Schizophr 6:1–12

    Article  Google Scholar 

  256. Chen Z-R, Huang J-B, Yang S-L, Hong F-F (2022) Role of cholinergic signaling in Alzheimer’s disease. Molecules 27:1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Iarkov A, Mendoza C, Echeverria V (2021) Cholinergic receptor modulation as a target for preventing dementia in Parkinson’s disease. Front Neurosci 15:665820

  258. Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT et al (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141:1917–1933

    Article  PubMed  PubMed Central  Google Scholar 

  259. Assous M (2021) Striatal cholinergic transmission. Focus on nicotinic receptors’ influence in striatal circuits. Eur J Neurosci 53:2421–42

    Article  PubMed  PubMed Central  Google Scholar 

  260. Conejero-Goldberg C, Davies P, Ulloa L (2008) Alpha7 nicotinic acetylcholine receptor: a link between inflammation and neurodegeneration. Neurosci Biobehav Rev 32:693–706

    Article  CAS  PubMed  Google Scholar 

  261. Foucault - Fruchard L, Doméné A, Page G, Windsor M, Emond P, Rodrigues N et al (2017) Neuroprotective effect of the alpha 7 nicotinic receptor agonist PHA 543613 in an in-vivo excitotoxic adult rat model. Neuroscience 356:52–63

  262. Papke RL, Horenstein NA (2021) Therapeutic targeting of α7 nicotinic acetylcholine receptors. Pharmacol Rev 73:1118–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Tregellas JR, Wylie KP (2019) Alpha7 Nicotinic receptors as therapeutic targets in schizophrenia. Nicotine Tob Res Off J Soc Res Nicotine Tob 21:349–356

    Article  Google Scholar 

  264. Ma K-G, Qian Y-H (2019) Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer’s disease. Neuropeptides 73:96–106

    Article  CAS  PubMed  Google Scholar 

  265. Komal P, Evans G, Nashmi R (2011) A rapid agonist application system for fast activation of ligand-gated ion channels. J Neurosci Methods 198:246–254

    Article  CAS  PubMed  Google Scholar 

  266. Dau A, Komal P, Truong M, Morris G, Evans G, Nashmi R (2013) RIC-3 differentially modulates α4β2 and α7 nicotinic receptor assembly, expression, and nicotine-induced receptor upregulation. BMC Neurosci 14:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Elseweidy MM, Mahrous M, Ali SI, Shaheen MA, Younis NN (2023) Vitamin D alleviates cognitive dysfunction and brain damage induced by copper sulfate intake in experimental rats: focus on its combination with donepezil. Naunyn Schmiedebergs Arch Pharmacol 396(9):1931–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Alrefaie Z, Alhayani A (2015) Vitamin D3 improves decline in cognitive function and cholinergic transmission in prefrontal cortex of streptozotocin-induced diabetic rats. Behav Brain Res 287:156–162

    Article  CAS  PubMed  Google Scholar 

  269. Karabulut M, Baykan O, Aksoz E (2021) Age-related differences in the effect of vitamin D on scopolamine-induced learning and memory impairment. Ann Med Res 28:799

    Article  Google Scholar 

  270. Wu B, Tao X, Liu C, Li H, Jiang T, Chen Z et al (2021) Vitamin D3 reduces hippocampal NR2A and anxiety in nicotine withdrawal mice. Transl Neurosci 12:273–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Marino A, Battaglini M, Moles N, Ciofani G (2022) Natural antioxidant compounds as potential pharmaceutical tools against neurodegenerative diseases. ACS Omega 7:25974–25990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Muller M, Leavitt BR (2014) Iron dysregulation in Huntington’s disease. J Neurochem 130:328–350

    Article  CAS  PubMed  Google Scholar 

  273. Wan W, Jin L, Wang Z, Wang L, Fei G, Ye F et al (2017) Iron deposition leads to neuronal α-synuclein pathology by inducing autophagy dysfunction. Front Neurol 8:1

    Article  PubMed  PubMed Central  Google Scholar 

  274. Chen B, Wen X, Jiang H, Wang J, Song N, Xie J (2019) Interactions between iron and α-synuclein pathology in Parkinson’s disease. Free Radic Biol Med 141:253–260

    Article  CAS  PubMed  Google Scholar 

  275. Mi Y, Gao X, Xu H, Cui Y, Zhang Y, Gou X (2019) The emerging roles of ferroptosis in Huntington’s disease. Neuromolecular Med 21:110–119

    Article  CAS  PubMed  Google Scholar 

  276. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Hassannia B, Van Coillie S, Vanden BT (2021) Ferroptosis: biological rust of lipid membranes. Antioxid Redox Signal 35:487–509

    Article  CAS  PubMed  Google Scholar 

  278. David S, Jhelum P, Ryan F, Jeong SY, Kroner A (2022) Dysregulation of iron homeostasis in the central nervous system and the role of ferroptosis in neurodegenerative disorders. Antioxid Redox Signal 37:150–170

    Article  CAS  PubMed  Google Scholar 

  279. Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26:165–176

    Article  CAS  PubMed  Google Scholar 

  280. Hambright WS, Fonseca RS, Chen L, Na R, Ran Q (2017) Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 12:8–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Jhelum P, Santos-Nogueira E, Teo W, Haumont A, Lenoël I, Stys PK et al (2020) Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination. J Neurosci 40:9327–9341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Jhelum P, Zandee S, Ryan F, Zarruk JG, Michalke B, Venkataramani V et al (2023) Ferroptosis induces detrimental effects in chronic EAE and its implications for progressive MS. Acta Neuropathol Commun 11:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Bao W-D, Pang P, Zhou X-T, Hu F, Xiong W, Chen K et al (2021) Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ 28:1548–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Conde JR, Streit WJ (2006) Microglia in the aging brain. J Neuropathol Exp Neurol 65:199–203

    Article  PubMed  Google Scholar 

  286. Jeong SY, David S (2006) Age-related changes in iron homeostasis and cell death in the cerebellum of ceruloplasmin-deficient mice. J Neurosci Off J Soc Neurosci 26:9810–9819

    Article  CAS  Google Scholar 

  287. Farrall AJ, Wardlaw JM (2009) Blood-brain barrier: ageing and microvascular disease–systematic review and meta-analysis. Neurobiol Aging 30:337–352

    Article  CAS  PubMed  Google Scholar 

  288. Rouault TA, Tong W-H (2005) Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol 6:345–351

    Article  CAS  PubMed  Google Scholar 

  289. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    Article  CAS  PubMed  Google Scholar 

  290. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414

    Article  CAS  PubMed  Google Scholar 

  291. Hu Z, Zhang H, Yi B, Yang S, Liu J, Hu J et al (2020) VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis 11:1–11

    Article  Google Scholar 

  292. Li L, Li W-J, Zheng X-R, Liu Q-L, Du Q, Lai Y-J et al (2022) Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation. Mol Med Camb Mass 28:11

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Rigby WF, Denome S, Fanger MW (1987) Regulation of lymphokine production and human T lymphocyte activation by 1,25-dihydroxyvitamin D3. Specific inhibition at the level of messenger RNA. J Clin Invest. 79:1659–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Claro da Silva T, Hiller C, Gai Z, Kullak-Ublick GA (2016) Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor. J Steroid Biochem Mol Biol 163:77–87

    Article  PubMed  Google Scholar 

  295. Molinari C, Morsanuto V, Ghirlanda S, Ruga S, Notte F, Gaetano L et al (2019) Role of combined lipoic acid and vitamin D3 on astrocytes as a way to prevent brain ageing by induced oxidative stress and iron accumulation. Oxid Med Cell Longev 2019:2843121

  296. Wu T-Y, Zhao L-X, Zhang Y-H, Fan Y-G (2022) Activation of vitamin D receptor inhibits Tau phosphorylation is associated with reduction of iron accumulation in APP/PS1 transgenic mice. Neurochem Int 153:105260

    Article  CAS  PubMed  Google Scholar 

  297. Bennett L, Kersaitis C, Macaulay SL, Münch G, Niedermayer G, Nigro J et al (2013) Vitamin D2-enriched button mushroom (Agaricus bisporus) improves memory in both wild type and APPswe/PS1dE9 transgenic mice. PLoS ONE 8:e76362

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  298. Mehri N, Haddadi R, Ganji M, Shahidi S, Soleimani Asl S, Taheri Azandariani M et al (2020) Effects of vitamin D in an animal model of Alzheimer’s disease: behavioral assessment with biochemical investigation of Hippocampus and serum. Metab Brain Dis 35:263–274

    Article  CAS  PubMed  Google Scholar 

  299. Chinta SJ, Andersen JK (2008) Redox imbalance in Parkinson’s disease. Biochim Biophys Acta 1780:1362–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Jang W, Kim HJ, Li H, Jo KD, Lee MK, Song SH et al (2014) 1,25-Dyhydroxyvitamin D3 attenuates rotenone-induced neurotoxicity in SH-SY5Y cells through induction of autophagy. Biochem Biophys Res Commun 451:142–147

    Article  CAS  PubMed  Google Scholar 

  301. Jang W, Park H-H, Lee K-Y, Lee YJ, Kim H-T, Koh S-H (2015) 1,25-dyhydroxyvitamin D3 attenuates L-DOPA-induced neurotoxicity in neural stem cells. Mol Neurobiol 51:558–570

    Article  CAS  PubMed  Google Scholar 

  302. Restrepo-Angulo I, Bañuelos C, Camacho J (2020) Ion channel regulation by sex steroid hormones and vitamin D in cancer: a potential opportunity for cancer diagnosis and therapy. Front Pharmacol 11:152

  303. Long W, Johnson J, Kalyaanamoorthy S, Light P (2023) TRPV1 channels as a newly identified target for vitamin D. Channels 15:360–374

    Article  Google Scholar 

  304. Gooch H, Cui X, Anggono V, Trzaskowski M, Tan MC, Eyles DW et al (2019) 1,25-Dihydroxyvitamin D modulates L-type voltage-gated calcium channels in a subset of neurons in the developing mouse prefrontal cortex. Transl Psychiatry 9:281

    Article  PubMed  PubMed Central  Google Scholar 

  305. Olszewska AM, Sieradzan AK, Bednarczyk P, Szewczyk A, Żmijewski MA (2022) Mitochondrial potassium channels: a novel calcitriol target. Cell Mol Biol Lett 27:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Menegaz D, Dornelles CRT, Fern, Cavalari a C, Gonçalves R, Silva FRMB (2016) Potassium channels couple to 1,25(OH)2 vitamin D3 Rapid responses and secretion in immature sertoli cells. J Clin Mol Endocrinol 1:33

  307. Zakon HH (1998) The effects of steroid hormones on electrical activity of excitable cells. Trends Neurosci 21:202–207

    Article  CAS  PubMed  Google Scholar 

  308. Kalueff AV, Tuohimaa P (2007) Neurosteroid hormone vitamin D and its utility in clinical nutrition. Curr Opin Clin Nutr Metab Care 10:12

    Article  CAS  PubMed  Google Scholar 

  309. Nadim F, Bucher D (2014) Neuromodulation of neurons and synapses. Curr Opin Neurobiol 29:48–56

  310. Voglis G, Tavernarakis N (2006) The role of synaptic ion channels in synaptic plasticity. EMBO Rep 7:1104–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Chambon J, Komal P, Lewitus GM, Kemp GM, Valade S, Adaïdi H et al (2023) Early TNF-Dependent regulation of excitatory and inhibitory synapses on striatal direct pathway medium spiny neurons in the YAC128 mouse model of Huntington’s disease. J Neurosci Off J Soc Neurosci 43:672–680

    Article  CAS  Google Scholar 

  312. Gáll Z, Székely O (2021) Role of vitamin D in cognitive dysfunction: new molecular concepts and discrepancies between animal and human findings. Nutrients 13:3672

    Article  PubMed  PubMed Central  Google Scholar 

  313. Taghizadeh M, Talaei SA, Djazayeri A, Salami M (2014) Vitamin D supplementation restores suppressed synaptic plasticity in Alzheimer’s disease. Nutr Neurosci 17:172–177

    Article  CAS  PubMed  Google Scholar 

  314. Salami M, Talaei SA, Davari S, Taghizadeh M (2012) Hippocampal long term potentiation in rats under different regimens of vitamin D: an in vivo study. Neurosci Lett 509:56–59

    Article  CAS  PubMed  Google Scholar 

  315. Kouba BR, Torrá ACNC, Camargo A, Rodrigues ALS (2023) The antidepressant-like effect elicited by vitamin D3 is associated with BDNF/TrkB-related synaptic protein synthesis. Metab Brain Dis 38:601–611

    Article  CAS  PubMed  Google Scholar 

  316. Marsh J, Alifragis P (2018) Synaptic dysfunction in Alzheimer’s disease: the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention. Neural Regen Res 13:616–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Taoufik E, Kouroupi G, Zygogianni O, Matsas R (2018) Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open Biol 8:180138

    Article  PubMed  PubMed Central  Google Scholar 

  318. Baker K, Gordon SL, Melland H, Bumbak F, Scott DJ, Jiang TJ et al (2018) SYT1-associated neurodevelopmental disorder: a case series. Brain 141:2576–2591

    Article  PubMed  PubMed Central  Google Scholar 

  319. Levy AM, Gomez-Puertas P, Tümer Z (2022) Neurodevelopmental disorders associated with PSD-95 and its interaction partners. Int J Mol Sci 23:4390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Mirza FJ, Zahid S (2017) The role of synapsins in neurological disorders. Neurosci Bull 34:349–358

    Article  PubMed  PubMed Central  Google Scholar 

  321. Ando K, Ndjim M, Turbant S, Fontaine G, Pregoni G, Dauphinot L et al (2020) The lipid phosphatase Synaptojanin 1 undergoes a significant alteration in expression and solubility and is associated with brain lesions in Alzheimer’s disease. Acta Neuropathol Commun 8:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Khassafi N, Zahraei Z, Vahidinia Z, Karimian M, Azami TA (2022) Calcitriol Pretreatment attenuates glutamate neurotoxicity by regulating NMDAR and CYP46A1 gene expression in rats subjected to transient middle cerebral artery occlusion. J Neuropathol Exp Neurol 81:252–259

    Article  CAS  PubMed  Google Scholar 

  323. Cass WA, Peters LE, Fletcher AM, Yurek DM (2012) Evoked dopamine overflow is augmented in the striatum of calcitriol treated rats. Neurochem Int 60:186–191

    Article  CAS  PubMed  Google Scholar 

  324. Orme RP, Bhangal MS, Fricker RA (2013) Calcitriol imparts neuroprotection in vitro to midbrain dopaminergic neurons by upregulating GDNF expression. PLoS ONE 8:e62040

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  325. Trinko JR, Land BB, Solecki WB, Wickham RJ, Tellez LA, Maldonado-Aviles J et al (2016) Vitamin D3: a role in dopamine circuit regulation, diet-induced obesity, and drug consumption. eNeuro 3:0122–15

  326. Simmons EC, Scholpa NE, Schnellmann RG (2020) Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp Neurol 329:113309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14:457–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Endres D, Werden R, Schweizer T, Schröter N, Schiele MA, Nickel K et al (2022) Novel neuronal autoantibodies in Huntington’s disease. Biol Psychiatry 91:e21–e23

    Article  CAS  PubMed  Google Scholar 

  329. Kocurova G, Ricny J, Ovsepian SV (2022) Autoantibodies targeting neuronal proteins as biomarkers for neurodegenerative diseases. Theranostics 12:3045–3056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Golde TE, Borchelt DR, Giasson BI, Lewis J (2013) Thinking laterally about neurodegenerative proteinopathies. J Clin Invest 123:1847–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Soto C, Pritzkow S (2018) Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci 21:1332–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Caron NS, Banos R, Aly AE, Xie Y, Ko S, Potluri N et al (2022) Cerebrospinal fluid mutant huntingtin is a biomarker for huntingtin lowering in the striatum of Huntington disease mice. Neurobiol Dis 166:105652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Yu J, Gattoni-Celli M, Zhu H, Bhat NR, Sambamurti K, Gattoni-Celli S et al (2011) Vitamin D3-enriched diet correlates with a decrease of amyloid plaques in the brain of AβPP transgenic mice. J Alzheimers Dis JAD 25:295–307

    Article  CAS  PubMed  Google Scholar 

  334. Briones TL, Darwish H (2012) Vitamin D mitigates age-related cognitive decline through the modulation of pro-inflammatory state and decrease in amyloid burden. J Neuroinflammation 9:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Patel P, Shah J (2017) Role of Vitamin D in Amyloid clearance via LRP-1 upregulation in Alzheimer’s disease: a potential therapeutic target? J Chem Neuroanat 85:36–42

    Article  CAS  PubMed  Google Scholar 

  336. Machiela E, Jeloka R, Caron NS, Mehta S, Schmidt ME, Baddeley HJE et al (2020) The interaction of aging and cellular stress contributes to pathogenesis in mouse and human Huntington disease neurons. Front Aging Neurosci 12:524369

  337. Yuan A, Nixon RA (2021) Neurofilament proteins as biomarkers to monitor neurological diseases and the efficacy of therapies. Front Neurosci 15:689938

  338. Liu Q, Xie F, Alvarado-Diaz A, Smith MA, Moreira PI, Zhu X et al (2011) Neurofilamentopathy in neurodegenerative diseases. Open Neurol J 5:58–62

    Article  PubMed  PubMed Central  Google Scholar 

  339. Goischke H-K (2022) Neurofilament light chain determination: referee for future vitamin D3 supplementation in multiple sclerosis? NeuroImmunoModulation 29:520–522

    Article  CAS  PubMed  Google Scholar 

  340. Rodney C, Rodney S, Millis RM (2020) Vitamin D and demyelinating diseases: neuromyelitis optica (NMO) and multiple sclerosis (MS). Autoimmune Dis 2020:8718736

  341. Corriveau RA, Huh GS, Shatz CJ (1998) Regulation of Class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21:505–520

    Article  CAS  PubMed  Google Scholar 

  342. Syken J, Shatz CJ (2003) Expression of T cell receptor beta locus in central nervous system neurons. Proc Natl Acad Sci U S A 100:13048–13053

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  343. Boulanger LM, Shatz CJ (2004) Immune signalling in neural development, synaptic plasticity and disease. Nat Rev Neurosci 5:521–531

    Article  CAS  PubMed  Google Scholar 

  344. Goddard CA, Butts DA, Shatz CJ (2007) Regulation of CNS synapses by neuronal MHC class I. Proc Natl Acad Sci U S A 104:6828–6833

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  345. Boulanger LM (2009) Immune proteins in brain development and synaptic plasticity. Neuron 64:93–109

    Article  CAS  PubMed  Google Scholar 

  346. Komal P, Nashmi R (2015) T-cell receptors modify neuronal function in the central nervous system. Biochem Pharmacol 97:512–517

    Article  CAS  PubMed  Google Scholar 

  347. Cebrián C, Loike JD, Sulzer D (2014) Neuronal MHC-I expression and its implications in synaptic function, axonal regeneration and Parkinson’s and other brain diseases. Front Neuroanat 8:114

    Article  PubMed  PubMed Central  Google Scholar 

  348. Faust T, Gunner G, Schafer DP (2021) Mechanisms governing activity-dependent synaptic pruning in the mammalian CNS. Nat Rev Neurosci 22:657–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Hong S, Dissing-Olesen L, Stevens B (2016) New insights on the role of microglia in synaptic pruning in health and disease. Curr Opin Neurobiol 36:128–134

    Article  CAS  PubMed  Google Scholar 

  350. Cardozo PL, de Lima IBQ, Maciel EMA, Silva NC, Dobransky T, Ribeiro FM (2019) Synaptic elimination in neurological disorders. Curr Neuropharmacol 17:1071–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Sakai J (2020) Core Concept: How synaptic pruning shapes neural wiring during development and possibly, in disease. Proc Natl Acad Sci U S A 117:16096–16099

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  352. Wang B-Y, Ye Y-Y, Qian C, Zhang H-B, Mao H-X, Yao L-P et al (2021) Stress increases MHC-I expression in dopaminergic neurons and induces autoimmune activation in Parkinson’s disease. Neural Regen Res 16:2521–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Zalocusky KA, Najm R, Taubes AL, Hao Y, Yoon SY, Koutsodendris N et al (2021) Neuronal ApoE upregulates MHC-I expression to drive selective neurodegeneration in Alzheimer’s disease. Nat Neurosci 24:786–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Staats K, Schonefeldt S, Van Rillaer M, Van Hoecke A, Van Damme P, Robberecht W et al. Beta-2 microglobulin is important for disease progression in a murine model for amyotrophic lateral sclerosis. Front Cell Neurosci. 2013;7.

  355. Tetruashvily MM, McDonald MA, Frietze KK, Boulanger LM (2016) MHCI promotes developmental synapse elimination and aging-related synapse loss at the vertebrate neuromuscular junction. Brain Behav Immun 56:197–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Zujovic V, Benavides J, Vigé X, Carter C, Taupin V (2000) Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 29:305–315

    Article  CAS  PubMed  Google Scholar 

  357. Li M, Shang D-S, Zhao W-D, Tian L, Li B, Fang W-G et al (2009) Amyloid β interaction with receptor for advanced glycation end products up-regulates brain endothelial CCR5 expression and promotes T cells crossing the blood-brain barrier1. J Immunol 182:5778–5788

    Article  CAS  PubMed  Google Scholar 

  358. Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT (2010) Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68:19–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Griffioen K, Mattson MP, Okun E (2018) Deficiency of Toll-like receptors 2, 3 or 4 extends life expectancy in Huntington’s disease mice. Heliyon 4:e00508

    Article  PubMed  PubMed Central  Google Scholar 

  360. Zhang H, Lin A, Gong P, Chen Y, Ye RD, Qian F et al (2020) The chemokine-like receptor 1 deficiency improves cognitive deficits of AD mice and attenuates tau hyperphosphorylation via regulating tau seeding. J Neurosci 40:6991–7007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Hobson BD, Sulzer D (2022) Neuronal presentation of antigen and its possible role in Parkinson’s disease. J Park Dis 12:S137–S147

    CAS  Google Scholar 

  362. Wojcieszak J, Kuczyńska K, Zawilska JB (2022) Role of chemokines in the development and progression of Alzheimer’s disease. J Mol Neurosci 72:1929–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Zhong L, Sheng X, Wang W, Li Y, Zhuo R, Wang K et al (2023) TREM2 receptor protects against complement-mediated synaptic loss by binding to complement C1q during neurodegeneration. Immunity 56:1794-1808.e8

    Article  CAS  PubMed  Google Scholar 

  364. Lương Vinh Quốc K, Nguyễn LTH (2013) Roles of vitamin D in amyotrophic lateral sclerosis: possible genetic and cellular signaling mechanisms. Mol Brain 6:16

    Article  Google Scholar 

  365. Moretti R, Morelli ME, Caruso P (2018) Vitamin D in neurological diseases: a rationale for a pathogenic impact. Int J Mol Sci 19:2245

    Article  PubMed  PubMed Central  Google Scholar 

  366. Hochmeister S, Aeinehband S, Dorris C, Berglund R, Haindl MT, Velikic V et al (2020) Effect of vitamin D on experimental autoimmune neuroinflammation is dependent on haplotypes comprising naturally occurring allelic variants of ciiTA (Mhc2ta). Front Neurol 11:600401

  367. Behl T, Arora A, Singla RK, Sehgal A, Makeen HA, Albratty M et al (2022) Understanding the role of “sunshine vitamin D” in Parkinson’s disease: a review. Front Pharmacol 13:993033

  368. Janjusevic M, Gagno G, Fluca AL, Padoan L, Beltrami AP, Sinagra G et al (2022) The peculiar role of vitamin D in the pathophysiology of cardiovascular and neurodegenerative diseases. Life Sci 289:120193

    Article  CAS  PubMed  Google Scholar 

  369. Ghahremani M, Smith EE, Chen H-Y, Creese B, Goodarzi Z, Ismail Z (2023) Vitamin D supplementation and incident dementia: effects of sex, APOE, and baseline cognitive status. Alzheimers Dement Diagn Assess Dis Monit 15:e12404

    Google Scholar 

  370. Ruffo P, De Amicis F, Giardina E, Conforti FL (2022) Long-noncoding RNAs as epigenetic regulators in neurodegenerative diseases. Neural Regen Res 18:1243–1248

    PubMed Central  Google Scholar 

  371. Park J, Lee K, Kim K, Yi S-J (2022) The role of histone modifications: from neurodevelopment to neurodiseases. Signal Transduct Target Ther 7:1–23

    Google Scholar 

  372. Lee AJ, Kim C, Park S et al (2023) Characterization of altered molecular mechanisms in Parkinson’s disease through cell type–resolved multiomics analyses. Sci Adv 9:2467

    Article  Google Scholar 

  373. Ghafouri-Fard S, Khoshbakht T, Hussen BM et al (2022) The emerging role of long non-coding RNAs, microRNAs, and an accelerated epigenetic age in Huntington’s disease. Front Aging Neurosci. 14:987174

  374. Hwang J-Y, Aromolaran KA, Zukin RS (2017) The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat Rev Neurosci 18:347–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Pal S, Tyler JK (2016) Epigenetics and aging Sci Adv 2:e1600584

    ADS  PubMed  Google Scholar 

  376. Rasmi Y, Shokati A, Hassan A et al (2022) The role of DNA methylation in progression of neurological disorders and neurodegenerative diseases as well as the prospect of using DNA methylation inhibitors as therapeutic agents for such disorders. IBRO Neurosci Rep 14:28–37

    Article  PubMed  PubMed Central  Google Scholar 

  377. Kochmanski J, Kuhn NC, Bernstein AI (2022) Parkinson’s disease-associated, sex-specific changes in DNA methylation at PARK7 (DJ-1), SLC17A6 (VGLUT2), PTPRN2 (IA-2β), and NR4A2 (NURR1) in cortical neurons. Npj Park Dis 8:1–13

    Google Scholar 

  378. Sharma VK, Mehta V, Singh TG (2020) Alzheimer’s disorder: epigenetic connection and associated risk factors. Curr Neuropharmacol 18:740–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Wheildon G, Weymouth LS, Smith AR et al (2022) DNA methylation profiling across brain regions in Huntington’s disease. Alzheimers Dement 18:e067590

    Article  Google Scholar 

  380. Karlic H, Varga F (2011) Impact of vitamin D metabolism on clinical epigenetics. Clin Epigenetics 2:55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Xue J, Schoenrock SA, Valdar W et al (2016) Maternal vitamin D depletion alters DNA methylation at imprinted loci in multiple generations. Clin Epigenetics 8:107

    Article  PubMed  PubMed Central  Google Scholar 

  382. Wimalawansa SJ (2019) Vitamin D deficiency: effects on oxidative stress, epigenetics, gene regulation, and aging. Biology 8:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Fetahu IS, Höbaus J, Kállay E (2014) Vitamin D, and the epigenome. Front Physiol 5:164

    Article  PubMed  PubMed Central  Google Scholar 

  384. Seuter S, Ryynänen J, Carlberg C (2014) The ASAP2 gene is a primary target of 1,25-dihydroxyvitamin D3 in human monocytes and macrophages. J Steroid Biochem Mol Biol 144(Pt A):12–18

    Article  CAS  PubMed  Google Scholar 

  385. Shukla S, Tekwani BL (2020) Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front Pharmacol 11:537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Li H, Shi G, Zha H et al (2021) Inhibition of histone deacetylase promotes a neuroprotective mechanism in an experimental model of Parkinson’s disease. Arch Med Sci 20:130287

  387. Liu F-H, Li S-S, Li X-X et al (2017) Vitamin D3 induces vitamin D receptor and HDAC11 binding to relieve the promoter of the tight junction proteins. Oncotarget 8:58781–58789

    Article  PubMed  PubMed Central  Google Scholar 

  388. Saidi L, Hammou H, Sicard F et al (2023) Maternal vitamin D deficiency and brain functions: a never-ending story. Food Funct 14:6290–6301

    Article  CAS  PubMed  Google Scholar 

  389. Pereira F, Barbáchano A, Silva J et al (2011) KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Hum Mol Genet 20:4655–4665

    Article  CAS  PubMed  Google Scholar 

  390. Pereira F, Barbáchano A, Singh PK et al (2012) Vitamin D has wide regulatory effects on histone demethylase genes. Cell Cycle Georget Tex 11:1081–1089

    Article  CAS  Google Scholar 

  391. Baba R, Matsuda S, Maeda R et al (2022) Investigating the therapeutic potential of lsd1 enzyme activity-specific inhibition by TAK-418 for social and memory deficits in rodent disease models. ACS Chem Neurosci 13:313–321

    Article  CAS  PubMed  Google Scholar 

  392. Ambrosio S, Majello B (2018) Targeting histone demethylase LSD1/KDM1a in neurodegenerative diseases. J Exp Neurosci 12:1179069518765743

    Article  PubMed  PubMed Central  Google Scholar 

  393. Mei Z, Hu H, Zou Y, Li D (2023) The role of Vitamin D in menopausal women’s health. Front Physiol 14:1211896

  394. Pérez-López FR, Chedraui P, Pilz S (2020) Vitamin D supplementation after the menopause. Ther Adv Endocrinol Metab 11:2042018820931291

    Article  PubMed  PubMed Central  Google Scholar 

  395. Xue Y, He X, Li H-D, Deng Y, Yan M, Cai H-L et al (2015) Simultaneous quantification of 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in rats shows strong correlations between serum and brain tissue levels. Int J Endocrinol 2015:296531

  396. Bleizgys A (2021) Vitamin D dosing: basic principles and a brief algorithm (2021 Update). Nutrients 13:4415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank CSIR (Council of Scientific and Industrial Research) for MSKV’s SRF fellowship. MSKV, SAM, and OE are grateful for institutional fellowships provided by BITS-Pilani, Hyderabad. KG is obligated to DBT (BT/INF/22/SP42551/2021) for its research associate fellowship.

Funding

This work is supported by the SERB-SURE grant, Science and Engineering Research Board, Government of India (SUR/2022/000980), DBT builder grant, Department of Biotechnology (DBT; BT/INF/22/SP42551/2021), Government of India, the Young Maternity Parenthood grant award by the International Brain Research Organization (IBRO-2021).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript and figures were prepared by MSKV, SAM, OE, KG, PJ, SM, and PK. The manuscript and figures were reviewed and edited by MSKV and PK. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pragya Komal.

Ethics declarations

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SKV, M., Abraham, S.M., Eshwari, O. et al. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03989-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03989-w

Keywords

Navigation