Skip to main content

Advertisement

Log in

Electroconvulsive Stimulation in Rats Induces Alterations in the Hippocampal miRNome: Translational Implications for Depression

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) may contribute to the development of depression and its treatment. Here, we used the hypothesis-neutral approach of next-generation sequencing (NGS) to gain comprehensive understanding of the effects of a course of electroconvulsive stimulation (ECS), the animal model equivalent of electroconvulsive therapy (ECT), on rat hippocampal miRNAs. Significant differential expression (p < 0.001) of six hippocampal miRNAs was noted following NGS, after correcting for multiple comparisons. Three of these miRNAs were upregulated (miR-132, miR-212, miR-331) and three downregulated (miR-204, miR-483, miR-301a). qRT-PCR confirmed significant changes in four of the six miRNAs (miR-132, miR-212, miR-204, miR-483). miR-483 was also significantly reduced in frontal cortex, though no other significant alterations were noted in frontal cortex, cerebellum, or whole blood. Assessing the translatability of the results, miR-132 and miR-483 were significantly reduced in whole blood samples from medicated patients with depression (n = 50) compared to healthy controls (n = 45), though ECT had no impact on miRNA levels. Notably, pre-ECT miR-204 levels moderately positively correlated with depression severity at baseline and moderately negatively correlated with mood score reduction post-ECT. miRNAs were also examined in cerebrospinal fluid and serum from a separate cohort of patients (n = 8) treated with ECT; no significant changes were noted post-treatment. However, there was a large positive correlation between changes in miR-212 and mood score post-ECT in serum. Though replication studies using larger sample sizes are required, alterations in miRNA expression may be informative about the mechanism of action of ECS/ECT and in turn might give insight into the neurobiology of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. UK Ect Review Group (2003) Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet 361(9360):799–808. https://doi.org/10.1016/S0140-6736(03)12705-5

    Article  Google Scholar 

  2. Kirov G, Jauhar S, Sienaert P, Kellner CH, McLoughlin DM (2021) Electroconvulsive therapy for depression: 80 years of progress. Brit J Psychiatry 219(5):594–597. https://doi.org/10.1192/bjp.2021.37

    Article  Google Scholar 

  3. O’Donovan S, Kennedy M, Guinan B, O’Mara S, McLoughlin DM (2012) A comparison of brief pulse and ultrabrief pulse electroconvulsive stimulation on rodent brain and behaviour. Prog Neuropsychopharmacol Biol Psychiatry 37(1):147–152. https://doi.org/10.1016/j.pnpbp.2011.12.012

    Article  Google Scholar 

  4. O’Donovan S, Dalton V, Harkin A, McLoughlin DM (2014) Effects of brief pulse and ultrabrief pulse electroconvulsive stimulation on rodent brain and behaviour in the corticosterone model of depression. Int J Neuropsychopharmacol 17(9):1477–1486. https://doi.org/10.1017/S1461145714000200

    Article  CAS  Google Scholar 

  5. Sun W, Park KW, Choe J, Rhyu IJ, Kim IH, Park SK, Choi B, Choi SH et al (2005) Identification of novel electroconvulsive shock-induced and activity-dependent genes in the rat brain. Biochem Biophys Res Commun 327(3):848–856. https://doi.org/10.1016/j.bbrc.2004.12.050

    Article  CAS  Google Scholar 

  6. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15(11):7539–7547

    Article  CAS  Google Scholar 

  7. Newton SS, Girgenti MJ, Collier EF, Duman RS (2006) Electroconvulsive seizure increases adult hippocampal angiogenesis in rats. Eur J Neurosci 24(3):819–828. https://doi.org/10.1111/j.1460-9568.2006.04958.x

    Article  Google Scholar 

  8. Elfving B, Bonefeld BE, Rosenberg R, Wegener G (2008) Differential expression of synaptic vesicle proteins after repeated electroconvulsive seizures in rat frontal cortex and hippocampus. Synapse 62(9):662–670. https://doi.org/10.1002/syn.20538

    Article  CAS  Google Scholar 

  9. Olesen MV, Wortwein G, Folke J, Pakkenberg B (2017) Electroconvulsive stimulation results in long-term survival of newly generated hippocampal neurons in rats. Hippocampus 27(1):52–60. https://doi.org/10.1002/hipo.22670

    Article  Google Scholar 

  10. Sartorius A, Hellweg R, Litzke J, Vogt M, Dormann C, Vollmayr B, Danker-Hopfe H, Gass P (2009) Correlations and discrepancies between serum and brain tissue levels of neurotrophins after electroconvulsive treatment in rats. Pharmacopsychiatry 42(6):270–276. https://doi.org/10.1055/s-0029-1224162

    Article  CAS  Google Scholar 

  11. Weber T, Baier V, Lentz K, Herrmann E, Krumm B, Sartorius A, Kronenberg G, Bartsch D (2013) Genetic fate mapping of type-1 stem cell-dependent increase in newborn hippocampal neurons after electroconvulsive seizures. Hippocampus 23(12):1321–1330. https://doi.org/10.1002/hipo.22171

    Article  CAS  Google Scholar 

  12. Ryan KM, O’Donovan SM, McLoughlin DM (2013) Electroconvulsive stimulation alters levels of BDNF-associated microRNAs. Neurosci Lett 549:125–129. https://doi.org/10.1016/j.neulet.2013.05.035

    Article  CAS  Google Scholar 

  13. O’Connor RM, Grenham S, Dinan TG, Cryan JF (2013) microRNAs as novel antidepressant targets: converging effects of ketamine and electroconvulsive shock therapy in the rat hippocampus. Int J Neuropsychopharmacol 16(8):1885–1892. https://doi.org/10.1017/S1461145713000448

    Article  CAS  Google Scholar 

  14. Kolshus E, Ryan KM, Blackshields G, Smyth P, Sheils O, McLoughlin DM (2017) Peripheral blood microRNA and VEGFA mRNA changes following electroconvulsive therapy: implications for psychotic depression. Acta Psychiatr Scand 136(6):594–606. https://doi.org/10.1111/acps.12821

    Article  CAS  Google Scholar 

  15. Gururajan A, Naughton ME, Scott KA, O’Connor RM, Moloney G, Clarke G, Dowling J, Walsh A et al (2016) MicroRNAs as biomarkers for major depression: a role for let-7b and let-7c. Transl Psychiatry 6(8):e862. https://doi.org/10.1038/tp.2016.131

    Article  CAS  Google Scholar 

  16. Stavast CJ, Erkeland SJ (2019) The non-canonical aspects of microRNAs: many roads to gene regulation. Cells 8(11):1465. https://doi.org/10.3390/cells8111465

    Article  CAS  Google Scholar 

  17. Kolshus E, Dalton VS, Ryan KM, McLoughlin DM (2014) When less is more–microRNAs and psychiatric disorders. Acta Psychiatr Scand 129(4):241–256. https://doi.org/10.1111/acps.12191

    Article  CAS  Google Scholar 

  18. Chan AW, Kocerha J (2012) The path to microRNA therapeutics in psychiatric and neurodegenerative disorders. Front Genet 3:82. https://doi.org/10.3389/fgene.2012.00082

    Article  CAS  Google Scholar 

  19. van den Berg MMJ, Krauskopf J, Ramaekers JG, Kleinjans JCS, Prickaerts J, Briede JJ (2020) Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog Neurobiol 185:101732. https://doi.org/10.1016/j.pneurobio.2019.101732

    Article  Google Scholar 

  20. Xu YY, Xia QH, Xia QR, Zhang XL, Liang J (2019) MicroRNA-based biomarkers in the diagnosis and monitoring of therapeutic response in patients with depression. Neuropsychiatr Dis Treat 15:3583–3597. https://doi.org/10.2147/Ndt.S237116

    Article  CAS  Google Scholar 

  21. Kuang WH, Dong ZQ, Tian LT, Li J (2018) MicroRNA-451a, microRNA-34a-5p, and microRNA-221-3p as predictors of response to antidepressant treatment. Braz J Med Biol Res 51(7):e7212. https://doi.org/10.1590/1414-431X20187212

    Article  Google Scholar 

  22. Li YJ, Xu M, Gao ZH, Wang YQ, Yue Z, Zhang YX, Li XX, Zhang C et al (2013) Alterations of serum levels of BDNF-related miRNAs in patients with depression. PLoS ONE 8(5):e63648. https://doi.org/10.1371/journal.pone.0063648

    Article  Google Scholar 

  23. Liu Y, Yang X, Zhao LS, Zhang J, Li T, Ma XH (2016) Increased miR-132 level is associated with visual memory dysfunction in patients with depression. Neuropsychiatr Dis Treat 12:2905–2911. https://doi.org/10.2147/Ndt.S116287

    Article  CAS  Google Scholar 

  24. Roy B, Dunbar M, Shelton RC, Dwivedi Y (2017) Identification of microRNA-124-3p as a putative epigenetic signature of major depressive disorder. Neuropsychopharmacol 42(4):864–875. https://doi.org/10.1038/npp.2016.175

    Article  CAS  Google Scholar 

  25. Camkurt MA, Acar S, Coskun S, Gunes M, Gunes S, Yilmaz MF, Gorur A, Tamer L (2015) Comparison of plasma microRNA levels in drug naive, first episode depressed patients and healthy controls. J Psychiatric Res 69:67–71. https://doi.org/10.1016/j.jpsychires.2015.07.023

    Article  Google Scholar 

  26. Lopez JP, Lim R, Cruceanu C, Crapper L, Fasano C, Labonte B, Maussion G, Yang JP et al (2014) miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat Med 20(7):764–768. https://doi.org/10.1038/nm.3582

    Article  CAS  Google Scholar 

  27. Liu W, Zhang F, Zheng Y, He S, Zhang T, Guo Q, Xu H, Chen H et al (2021) The role of circulating blood microRNA-374 and microRNA-10 levels in the pathogenesis and therapeutic mechanisms of major depressive disorder. Neurosci Lett 763:136184. https://doi.org/10.1016/j.neulet.2021.136184

    Article  CAS  Google Scholar 

  28. Hung YY, Wu MK, Tsai MC, Huang YL, Kang HY (2019) Aberrant expression of intracellular let-7e, miR-146a, and miR-155 correlates with severity of depression in patients with major depressive disorder and is ameliorated after antidepressant treatment. Cells 8(7):647. https://doi.org/10.3390/cells8070647

    Article  CAS  Google Scholar 

  29. Hung YY, Chou CK, Yang YC, Fu HC, Loh EW, Kang HY (2021) Exosomal let-7e, miR-21-5p, miR-145, miR-146a and miR-155 in predicting antidepressants response in patients with major depressive disorder. Biomedicines 9(10):1428. https://doi.org/10.3390/biomedicines9101428

    Article  CAS  Google Scholar 

  30. Bocchio-Chiavetto L, Maffioletti E, Bettinsoli P, Giovannini C, Bignotti S, Tardito D, Corrada D, Milanesi L, Gennarelli M (2013) Blood microRNA changes in depressed patients during antidepressant treatment. Eur Neuropsychopharmacol 23(7):602–611. https://doi.org/10.1016/j.euroneuro.2012.06.013

    Article  CAS  Google Scholar 

  31. Lin CC, Tsai MC, Lee CT, Sun MH, Huang TL (2018) Antidepressant treatment increased serum miR-183 and miR-212 levels in patients with major depressive disorder. Psychiatry Res 270:232–237. https://doi.org/10.1016/j.psychres.2018.09.025

    Article  CAS  Google Scholar 

  32. Fiori LM, Lopez JP, Richard-Devantoy S, Berlim M, Chachamovich E, Jollant F, Foster J, Rotzinger S et al (2017) Investigation of miR-1202, miR-135a, and miR-16 in major depressive disorder and antidepressant response. Int J Neuropsychopharmacol 20(8):619–623. https://doi.org/10.1093/ijnp/pyx034

    Article  CAS  Google Scholar 

  33. Saeedi S, Nagy C, Ibrahim P, Théroux J-F, Wakid M, Fiori LM, Yang J, Rotzinger S et al (2021) Neuron-derived extracellular vesicles enriched from plasma show altered size and miRNA cargo as a function of antidepressant drug response. Mol Psychiatry 26:7417–7424. https://doi.org/10.1038/s41380-021-01255-2

    Article  CAS  Google Scholar 

  34. Song W, Shen Y, Zhang Y, Peng S, Zhang R, Ning A, Li H, Li X et al (2019) Expression alteration of microRNAs in nucleus accumbens is associated with chronic stress and antidepressant treatment in rats. BMC Med Inform Decis Mak 19(Suppl 6):271. https://doi.org/10.1186/s12911-019-0964-z

    Article  Google Scholar 

  35. Xin C, Xia J, Liu Y, Zhang Y (2020) MicroRNA-202-3p targets brain-derived neurotrophic factor and is involved in depression-like behaviors. Neuropsychiatr Dis Treat 16:1073–1083. https://doi.org/10.2147/NDT.S241136

    Article  CAS  Google Scholar 

  36. Gu Z, Pan J, Chen L (2019) MiR-124 suppression in the prefrontal cortex reduces depression-like behavior in mice. Biosci Rep 39(9):BSR20190186. https://doi.org/10.1042/BSR20190186

    Article  Google Scholar 

  37. Dai J, Pan JY, Liao N, Shi J, Zeng Q, Huang L, Chen LP (2020) Influence of miR-155 on behaviors of depression mice through regulating Wnt/beta-catenin signaling pathway. Eur Rev Med Pharmacol Sci 24(3):1398–1407. https://doi.org/10.26355/eurrev_202002_20197

    Article  CAS  Google Scholar 

  38. Fang K, Xu JX, Chen XX, Gao XR, Huang LL, Du AQ, Jiang C, Ge JF (2020) Differential serum exosome microRNA profile in a stress-induced depression rat model. J Affect Disord 274:144–158. https://doi.org/10.1016/j.jad.2020.05.017

    Article  CAS  Google Scholar 

  39. Huang C, Wang Y, Wu Z, Xu J, Zhou L, Wang D, Yang L, Zhu B et al (2021) miR-98-5p plays a critical role in depression and antidepressant effect of ketamine. Transl Psychiatry 11(1):454. https://doi.org/10.1038/s41398-021-01588-0

    Article  CAS  Google Scholar 

  40. Miao N, Jin J, Kim SN, Sun T (2018) Hippocampal microRNAs respond to administration of antidepressant fluoxetine in adult mice. Int J Mol Sci 19(3):671. https://doi.org/10.3390/ijms19030671

    Article  CAS  Google Scholar 

  41. First M, Spitzer R, Gibbon M, Williams J (1996) Structured clinical interview for DSM-IV axis I disorders, Clinician Version (SCID-CV). American Psychiatric Press, Washington DC

    Google Scholar 

  42. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    Article  CAS  Google Scholar 

  43. Semkovska M, Landau S, Dunne R, Kolshus E, Kavanagh A, Jelovac A, Noone M, Carton M et al (2016) Bitemporal versus high-dose unilateral twice-weekly electroconvulsive therapy for depression (EFFECT-Dep): a pragmatic, randomized, non-inferiority trial. Am J Psychiatry 173(4):408–417. https://doi.org/10.1176/appi.ajp.2015.15030372

    Article  Google Scholar 

  44. Ryan KM, Allers KA, McLoughlin DM, Harkin A (2020) Tryptophan metabolite concentrations in depressed patients before and after electroconvulsive therapy. Brain Behav Immun 83:153–162. https://doi.org/10.1016/j.bbi.2019.10.005

    Article  CAS  Google Scholar 

  45. Mindt S, Neumaier M, Hellweg R, Sartorius A, Kranaster L (2020) Brain-derived neurotrophic factor in the cerebrospinal fluid increases during electroconvulsive therapy in patients with depression: a preliminary report. J ECT 36(3):193–197. https://doi.org/10.1097/YCT.0000000000000667

    Article  CAS  Google Scholar 

  46. Ryan KM, McLoughlin DM (2019) Peripheral blood GILZ mRNA levels in depression and following electroconvulsive therapy. Psychoneuroendocrinol 101:304–310. https://doi.org/10.1016/j.psyneuen.2018.12.234

    Article  CAS  Google Scholar 

  47. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  48. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  CAS  Google Scholar 

  49. Oved K, Morag A, Pasmanik-Chor M, Oron-Karni V, Shomron N, Rehavi M, Stingl JC, Gurwitz D (2012) Genome-wide miRNA expression profiling of human lymphoblastoid cell lines identifies tentative SSRI antidepressant response biomarkers. Pharmacogenomics 13(10):1129–1139. https://doi.org/10.2217/pgs.12.93

    Article  CAS  Google Scholar 

  50. Yi LT, Li J, Liu BB, Luo L, Liu Q, Geng D (2014) BDNF-ERK-CREB signalling mediates the role of miR-132 in the regulation of the effects of oleanolic acid in male mice. J Psychiatry Neurosci 39(5):348–359

    Article  Google Scholar 

  51. Pan B, Liu Y (2015) Effects of duloxetine on microRNA expression profile in frontal lobe and hippocampus in a mouse model of depression. Int J Clin Exp Pathol 8(11):15454–15461

    CAS  Google Scholar 

  52. Hara Y, Ago Y, Takano E, Hasebe S, Nakazawa T, Hashimoto H, Matsuda T, Takuma K (2017) Prenatal exposure to valproic acid increases miR-132 levels in the mouse embryonic brain. Mol Autism 8:33. https://doi.org/10.1186/s13229-017-0149-5

    Article  CAS  Google Scholar 

  53. Wang JQ, Mao L (2019) The ERK pathway: molecular mechanisms and treatment of depression. Mol Neurobiol 56(9):6197–6205. https://doi.org/10.1007/s12035-019-1524-3

    Article  CAS  Google Scholar 

  54. Castren E, Monteggia LM (2021) Brain-derived neurotrophic factor signaling in depression and antidepressant action. Biol Psychiatry 90(2):128–136. https://doi.org/10.1016/j.biopsych.2021.05.008

    Article  CAS  Google Scholar 

  55. Nestler EJ (2015) Role of the brain’s reward circuitry in depression: transcriptional mechanisms. Int Rev Neurobiol 124:151–170. https://doi.org/10.1016/bs.irn.2015.07.003

    Article  CAS  Google Scholar 

  56. Si L, Wang Y, Liu M, Yang L, Zhang L (2021) Expression and role of microRNA-212/nuclear factor I-A in depressive mice. Bioengineered 12(2):11520–11532. https://doi.org/10.1080/21655979.2021.2009964

    Article  CAS  Google Scholar 

  57. Cao MQ, Chen DH, Zhang CH, Wu ZZ (2013) Screening of specific microRNA in hippocampus of depression model rats and intervention effect of Chaihu Shugan San. Zhongguo Zhong Yao Za Zhi 38(10):1585–1589

    Google Scholar 

  58. Gawlinski D, Gawlinska K, Smaga I (2021) Maternal high-fat diet modulates Cnr1 gene expression in male rat offspring. Nutrients 13(8):2885. https://doi.org/10.3390/nu13082885

    Article  CAS  Google Scholar 

  59. Lan T, Li Y, Fan C, Wang L, Wang W, Chen S, Yu SY (2021) MicroRNA-204-5p reduction in rat hippocampus contributes to stress-induced pathology via targeting RGS12 signaling pathway. J Neuroinflammation 18(1):243. https://doi.org/10.1186/s12974-021-02299-5

    Article  CAS  Google Scholar 

  60. Gryglewski G, Lanzenberger R, Silberbauer LR, Pacher D, Kasper S, Rupprecht R, Frey R, Baldinger-Melich P (2021) Meta-analysis of brain structural changes after electroconvulsive therapy in depression. Brain Stimul 14(4):927–937. https://doi.org/10.1016/j.brs.2021.05.014

    Article  Google Scholar 

  61. Deng ZD, Argyelan M, Miller J, Quinn DK, Lloyd M, Jones TR, Upston J, Erhardt E et al (2022) Electroconvulsive therapy, electric field, neuroplasticity, and clinical outcomes. Mol Psychiatry 27(3):1676–1682. https://doi.org/10.1038/s41380-021-01380-y

    Article  CAS  Google Scholar 

  62. Lee WH, Deng ZD, Kim TS, Laine AF, Lisanby SH, Peterchev AV (2010) Regional electric field induced by electroconvulsive therapy: a finite element simulation study. Annu Int Conf IEEE Eng Med Biol Soc 2010:2045–2048. https://doi.org/10.1109/IEMBS.2010.5626553

    Article  Google Scholar 

  63. Nudelman AS, DiRocco DP, Lambert TJ, Garelick MG, Le J, Nathanson NM, Storm DR (2010) Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus 20(4):492–498. https://doi.org/10.1002/hipo.20646

    Article  CAS  Google Scholar 

  64. Azevedo JA, Carter BS, Meng F, Turner DL, Dai M, Schatzberg AF, Barchas JD, Jones EG et al (2016) The microRNA network is altered in anterior cingulate cortex of patients with unipolar and bipolar depression. J Psychiatr Res 82:58–67. https://doi.org/10.1016/j.jpsychires.2016.07.012

    Article  Google Scholar 

  65. Yu HC, Wu J, Zhang HX, Zhang GL, Sui J, Tong WW, Zhang XY, Nie LL et al (2015) Alterations of miR-132 are novel diagnostic biomarkers in peripheral blood of schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry 63:23–29. https://doi.org/10.1016/j.pnpbp.2015.05.007

    Article  CAS  Google Scholar 

  66. Sun XY, Lu J, Zhang L, Song HT, Zhao L, Fan HM, Zhong AF, Niu W et al (2015) Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients. J Clin Neurosci 22(3):570–574. https://doi.org/10.1016/j.jocn.2014.08.018

    Article  CAS  Google Scholar 

  67. Fang Y, Qiu Q, Zhang S, Sun L, Li G, Xiao S, Li X (2018) Changes in miRNA-132 and miR-124 levels in non-treated and citalopram-treated patients with depression. J Affect Disord 227:745–751. https://doi.org/10.1016/j.jad.2017.11.090

    Article  CAS  Google Scholar 

  68. Walker RM, Rybka J, Anderson SM, Torrance HS, Boxall R, Sussmann JE, Porteous DJ, McIntosh AM et al (2015) Preliminary investigation of miRNA expression in individuals at high familial risk of bipolar disorder. J Psychiatr Res 62:48–55. https://doi.org/10.1016/j.jpsychires.2015.01.006

    Article  Google Scholar 

  69. Kim AH, Reimers M, Maher B, Williamson V, McMichael O, McClay JL, van den Oord EJ, Riley BP, Kendler KS, Vladimirov VI (2010) MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res 124(1–3):183–191. https://doi.org/10.1016/j.schres.2010.07.002

    Article  Google Scholar 

  70. Weigelt K, Bergink V, Burgerhout KM, Pescatori M, Wijkhuijs A, Drexhage HA (2013) Down-regulation of inflammation-protective microRNAs 146a and 212 in monocytes of patients with postpartum psychosis. Brain Behav Immun 29:147–155. https://doi.org/10.1016/j.bbi.2012.12.018

    Article  CAS  Google Scholar 

  71. Moghbeli M, Zangouei AS, Nasrpour Navaii Z, Taghehchian N (2021) Molecular mechanisms of the microRNA-132 during tumor progressions. Cancer Cell Int 21(1):439. https://doi.org/10.1186/s12935-021-02149-7

    Article  CAS  Google Scholar 

  72. Ghafouri-Fard S, Hussen BM, Abak A, Taheri M, Jalili Khoshnoud R (2022) Aberrant expression of miRNAs in epilepsy. Mol Biol Rep 49(6):5057–5074. https://doi.org/10.1007/s11033-022-07188-5

    Article  CAS  Google Scholar 

  73. Zhang M, Bian Z (2021) Alzheimer’s disease and microRNA-132: a widespread pathological factor and potential therapeutic target. Front Neurosci 15:687973. https://doi.org/10.3389/fnins.2021.687973

    Article  Google Scholar 

  74. Yang Y, Li Y, Yang H, Guo J, Li N (2021) Circulating microRNAs and long non-coding RNAs as potential diagnostic biomarkers for Parkinson’s disease. Front Mol Neurosci 14:631553. https://doi.org/10.3389/fnmol.2021.631553

    Article  CAS  Google Scholar 

  75. Yoshino Y, Roy B, Dwivedi Y (2021) Differential and unique patterns of synaptic miRNA expression in dorsolateral prefrontal cortex of depressed subjects. Neuropsychopharmacol 46(5):900–910. https://doi.org/10.1038/s41386-020-00861-y

    Article  CAS  Google Scholar 

  76. Fiori LM, Kos A, Lin R, Theroux JF, Lopez JP, Kuhne C, Eggert C, Holzapfel M et al (2021) miR-323a regulates ERBB4 and is involved in depression. Mol Psychiatry 26(8):4191–4204. https://doi.org/10.1038/s41380-020-00953-7

    Article  CAS  Google Scholar 

  77. Qi S, Yang X, Zhao L, Calhoun VD, Perrone-Bizzozero N, Liu S, Jiang R, Jiang T et al (2018) MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major depressive disorder. Brain 141(3):916–926. https://doi.org/10.1093/brain/awx366

    Article  Google Scholar 

  78. Sun XY, Zhang J, Niu W, Guo W, Song HT, Li HY, Fan HM, Zhao L et al (2015) A preliminary analysis of microRNA as potential clinical biomarker for schizophrenia. Am J Med Genet B Neuropsychiatr Genet 168B(3):170–178. https://doi.org/10.1002/ajmg.b.32292

    Article  CAS  Google Scholar 

  79. Miller BH, Zeier Z, Xi L, Lanz TA, Deng S, Strathmann J, Willoughby D, Kenny PJ et al (2012) MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proc Natl Acad Sci USA 109(8):3125–3130. https://doi.org/10.1073/pnas.1113793109

    Article  Google Scholar 

  80. Remenyi J, Hunter CJ, Cole C, Ando H, Impey S, Monk CE, Martin KJ, Barton GJ et al (2010) Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem J 428(2):281–291. https://doi.org/10.1042/BJ20100024

    Article  CAS  Google Scholar 

  81. Luikart BW, Bensen AL, Washburn EK, Perederiy JV, Su KG, Li Y, Kernie SG, Parada LF, Westbrook GL (2011) miR-132 mediates the integration of newborn neurons into the adult dentate gyrus. PLoS ONE 6(5):e19077. https://doi.org/10.1371/journal.pone.0019077

    Article  CAS  Google Scholar 

  82. Aten S, Hansen KF, Hoyt KR, Obrietan K (2016) The miR-132/212 locus: a complex regulator of neuronal plasticity, gene expression and cognition. RNA Dis 3(2):e1375

    Google Scholar 

  83. Wanet A, Tacheny A, Arnould T, Renard P (2012) miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res 40(11):4742–4753. https://doi.org/10.1093/nar/gks151

    Article  CAS  Google Scholar 

  84. Hansen KF, Sakamoto K, Aten S, Snider KH, Loeser J, Hesse AM, Page CE, Pelz C et al (2016) Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome. Learn Mem 23(2):61–71. https://doi.org/10.1101/lm.039578.115

    Article  CAS  Google Scholar 

  85. Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, Mandel G, Goodman RH (2010) microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A 107(47):20382–20387. https://doi.org/10.1073/pnas.1015691107

    Article  Google Scholar 

  86. Gruzdev SK, Yakovlev AA, Druzhkova TA, Guekht AB, Gulyaeva NV (2019) The missing link: how exosomes and miRNAs can help in bridging psychiatry and molecular biology in the context of depression, bipolar disorder and schizophrenia. Cell Mol Neurobiol 39(6):729–750. https://doi.org/10.1007/s10571-019-00684-6

    Article  CAS  Google Scholar 

  87. An X, Wang Y (2022) Electroconvulsive shock increases neurotrophy and neurogenesis: time course and treatment session effects. Psychiatry Res 309:114390. https://doi.org/10.1016/j.psychres.2022.114390

    Article  Google Scholar 

  88. Qian Y, Song J, Ouyang Y, Han Q, Chen W, Zhao X, Xie Y, Chen Y et al (2017) Advances in roles of miR-132 in the nervous system. Front Pharmacol 8:770. https://doi.org/10.3389/fphar.2017.00770

    Article  CAS  Google Scholar 

  89. Xiang L, Ren Y, Li X, Zhao W, Song Y (2016) MicroRNA-204 suppresses epileptiform discharges through regulating TrkB-ERK1/2-CREB signaling in cultured hippocampal neurons. Brain Res 1639:99–107. https://doi.org/10.1016/j.brainres.2016.02.045

    Article  CAS  Google Scholar 

  90. Lepko T, Pusch M, Muller T, Schulte D, Ehses J, Kiebler M, Hasler J, Huttner HB et al (2019) Choroid plexus-derived miR-204 regulates the number of quiescent neural stem cells in the adult brain. EMBO J 38(17):e100481. https://doi.org/10.15252/embj.2018100481

    Article  CAS  Google Scholar 

  91. Liu H, Wang J, Yan R, Jin S, Wan Z, Cheng J, Li N, Chen L et al (2020) MicroRNA-204-5p mediates sevoflurane-induced cytotoxicity in HT22 cells by targeting brain-derived neurotrophic factor. Histol Histopathol 35(11):1353–1361. https://doi.org/10.14670/HH-18-266

    Article  CAS  Google Scholar 

  92. Mohammed CP, Rhee H, Phee BK, Kim K, Kim HJ, Lee H, Park JH, Jung JH et al (2016) miR-204 downregulates EphB2 in aging mouse hippocampal neurons. Aging Cell 15(2):380–388. https://doi.org/10.1111/acel.12444

    Article  CAS  Google Scholar 

  93. Liu H, Wang M, Xu L, Li M, Zhao M (2021) Neuroprotective effect of miR-204-5p downregulation against isoflurane-induced learning and memory impairment via targeting EphB2 and inhibiting neuroinflammation. Hum Exp Toxicol 40(10):1746–1754. https://doi.org/10.1177/09603271211009970

    Article  CAS  Google Scholar 

  94. Pepe F, Visone R, Veronese A (2018) The glucose-regulated miR-483-3p influences key signaling pathways in cancer. Cancers (Basel) 10(6):181. https://doi.org/10.3390/cancers10060181

    Article  CAS  Google Scholar 

  95. Luo YW, Xu Y, Cao WY, Zhong XL, Duan J, Wang XQ, Hu ZL, Li F et al (2015) Insulin-like growth factor 2 mitigates depressive behavior in a rat model of chronic stress. Neuropharmacol 89:318–324. https://doi.org/10.1016/j.neuropharm.2014.10.011

    Article  CAS  Google Scholar 

  96. Bumb JM, Aksay SS, Janke C, Kranaster L, Geisel O, Gass P, Hellweg R, Sartorius A (2015) Focus on ECT seizure quality: serum BDNF as a peripheral biomarker in depressed patients. Eur Arch Psychiatry Clin Neurosci 265(3):227–232. https://doi.org/10.1007/s00406-014-0543-3

    Article  Google Scholar 

  97. Ryan KM, McLoughlin DM (2018) From molecules to mind: mechanisms of action of electroconvulsive therapy. Acta Psychiatr Scand 138:177–179. https://doi.org/10.1111/acps.12951

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and healthy volunteers who participated in this study.

Funding

This work was supported by a NARSAD Young Investigator Grant 2014 from the Brain and Behavior Research Foundation awarded to KR (22516) and an award from the Health Research Board (HRB), Ireland (TRA/2007/5&HPF/2010/17).

Author information

Authors and Affiliations

Authors

Contributions

KR, GB, PS, OS, and DM conceptualised and designed the study. KR, PM, and GB were involved in the acquisition and analysis of the data. LK and AS provided CSF and serum samples. KR and DM interpreted the data and drafted the manuscript. All authors critically reviewed the manuscript and approved its publication.

Corresponding author

Correspondence to Karen M. Ryan.

Ethics declarations

Ethics Approval

Experimental procedures with animals were approved by the Bioresources Ethics Committee, Trinity College Dublin and were in compliance with the European Council Directive (86/609/EEC). Ethical approval for the human portion of this study was granted by the St Patrick’s University Hospital Research Ethics Committee in Dublin (Protocol No. 012/07) and the local ethics committee in Mannheim, Germany. The human studies were performed in accordance with the Declaration of Helsinki.

Consent to Participate

Written informed consent was obtained from all individual participants included in the study.

Consent for Publication

Not applicable.

Competing Interests

DMM has received speaker’s honoraria from MECTA and Otsuka and an honorarium from Janssen for participating in an esketamine advisory board meeting. KR, LK, AS, PS, GB, and OS have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryan, K.M., Smyth, P., Blackshields, G. et al. Electroconvulsive Stimulation in Rats Induces Alterations in the Hippocampal miRNome: Translational Implications for Depression. Mol Neurobiol 60, 1150–1163 (2023). https://doi.org/10.1007/s12035-022-03131-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03131-8

Keywords

Navigation