Skip to main content
Log in

miR-383-5p Regulated by the Transcription Factor CTCF Affects Neuronal Impairment in Cerebral Ischemia by Mediating Deacetylase HDAC9 Activity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stroke, the leading cause of long-term disability worldwide, is caused by the blockage or hemorage of cerebral arteries. The resultant cerebral ischemia causes local neuronal death and brain injury. Histone deacetylase 9 (HDAC9) has been reported to be elevated in ischemic brain injury, but its mechanism in stroke is still enigmatic. The present study aimed to unveil the manner of regulation of HDAC9 expression and the effect of HDAC9 activation on neuronal function in cerebral ischemia. MicroRNAs (miRNAs) targeting HDAC9 were predicted utilizing bioinformatics analysis. We then constructed the oxygen glucose deprivation (OGD) cell model and the middle cerebral artery occlusion (MCAO) rat model, and elucidated the expression of CCCTC binding factor (CTCF)/miR-383-5p/HDAC9. Targeting between miR-383-5p and HDAC9 was verified by dual-luciferase reporter assay and RNAi. After conducting an overexpression/knockdown assay, we assessed neuronal impairment and brain injury. We found that CTCF inhibited miR-383-5p expression via its enrichment in the promoter region of miR-383-5p, whereas the miR-383-5p targeted and inhibited HDAC9 expression. In the OGD model and the MCAO model, we confirmed that elevation of HDAC9 regulated by the CTCF/miR-383-5p/HDAC9 pathway mediated apoptosis induced by endoplasmic reticulum stress, while reduction of HDAC9 alleviated apoptosis and the symptoms of cerebral infarction in MCAO rats. Thus, the CTCF/miR-383-5p/HDAC9 pathway may present a target for drug development against ischemic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Radak D, Katsiki N, Resanovic I, Jovanovic A, Sudar-Milovanovic E, Zafirovic S, Mousad SA, Isenovic ER (2017) Apoptosis and Acute Brain Ischemia in Ischemic Stroke. Curr Vasc Pharmacol 15(2):115–122. https://doi.org/10.2174/1570161115666161104095522

    Article  CAS  PubMed  Google Scholar 

  2. Liu X, Zhao S, Liu F, Kang J, Xiao A, Li F, Zhang C, Yan F et al (2014) Remote ischemic postconditioning alleviates cerebral ischemic injury by attenuating endoplasmic reticulum stress-mediated apoptosis. Transl Stroke Res 5(6):692–700. https://doi.org/10.1007/s12975-014-0359-5

    Article  CAS  PubMed  Google Scholar 

  3. Yang T, Sun Y, Li Q, Li S, Shi Y, Leak RK, Chen J, Zhang F (2020) Ischemic preconditioning provides long-lasting neuroprotection against ischemic stroke: The role of Nrf2. Exp Neurol 325:113142. https://doi.org/10.1016/j.expneurol.2019.113142

    Article  CAS  PubMed  Google Scholar 

  4. Mosch A, Ettl T, Mamilos A, Schreml S, Sporl S, Spanier G, Klingelhoffer C (2019) Physiological concentrations of denosumab enhance osteogenic differentiation in human mesenchymal stem cells of the jaw bone. Arch Oral Biol 101:23–29. https://doi.org/10.1016/j.archoralbio.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  5. Alawieh A, Langley EF, Tomlinson S (2018) Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice. Sci Transl Med 10(441):10.1126/scitranslmed.aao6459

    Article  Google Scholar 

  6. Ejaz S, Emmrich JV, Sitnikov SL, Hong YT, Sawiak SJ, Fryer TD, Aigbirhio FI, Williamson DJ et al (2016) Normobaric hyperoxia markedly reduces brain damage and sensorimotor deficits following brief focal ischaemia. Brain 139(Pt 3):751–764. https://doi.org/10.1093/brain/awv391

    Article  PubMed  Google Scholar 

  7. Chamorro A, Dirnagl U, Urra X, Planas AM (2016) Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 15(8):869–881. https://doi.org/10.1016/S1474-4422(16)00114-9

    Article  CAS  PubMed  Google Scholar 

  8. Tymianski M (2011) Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nat Neurosci 14(11):1369–1373. https://doi.org/10.1038/nn.2951

    Article  CAS  PubMed  Google Scholar 

  9. Kim HJ, Leeds P, Chuang DM (2009) The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem 110(4):1226–1240. https://doi.org/10.1111/j.1471-4159.2009.06212.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang B, Zhu X, Kim Y, Li J, Huang S, Saleem S, Li RC, Xu Y et al (2012) Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Radic Biol Med 52(5):928–936. https://doi.org/10.1016/j.freeradbiomed.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  11. Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT (2009) Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 32(11):591–601. https://doi.org/10.1016/j.tins.2009.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dietz KC, Casaccia P (2010) HDAC inhibitors and neurodegeneration: at the edge between protection and damage. Pharmacol Res 62(1):11–17. https://doi.org/10.1016/j.phrs.2010.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fessler EB, Chibane FL, Wang Z, Chuang DM (2013) Potential roles of HDAC inhibitors in mitigating ischemia-induced brain damage and facilitating endogenous regeneration and recovery. Curr Pharm Des 19(28):5105–5120. https://doi.org/10.2174/1381612811319280009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pickell Z, Williams AM, Alam HB, Hsu CH (2020) Histone deacetylase inhibitors: a novel strategy for neuroprotection and cardioprotection following ischemia/reperfusion injury. J Am Heart Assoc 9(11):e016349. https://doi.org/10.1161/JAHA.120.016349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ganai SA, Ramadoss M, Mahadevan V (2016) Histone Deacetylase (HDAC) Inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration. Curr Neuropharmacol 14(1):55–71. https://doi.org/10.2174/1570159x13666151021111609

    Article  CAS  PubMed  Google Scholar 

  16. Shein NA, Shohami E (2011) Histone deacetylase inhibitors as therapeutic agents for acute central nervous system injuries. Mol Med 17(5-6):448–456. https://doi.org/10.2119/molmed.2011.00038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi W, Wei X, Wang Z, Han H, Fu Y, Liu J, Zhang Y, Guo J et al (2016) HDAC9 exacerbates endothelial injury in cerebral ischaemia/reperfusion injury. J Cell Mol Med 20(6):1139–1149. https://doi.org/10.1111/jcmm.12803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu S, Li H, Li K, Fan XD (2018) HDAC9 promotes brain ischemic injury by provoking IkappaBalpha/NF-kappaB and MAPKs signaling pathways. Biochem Biophys Res Commun 503(3):1322–1329. https://doi.org/10.1016/j.bbrc.2018.07.043

    Article  CAS  PubMed  Google Scholar 

  19. Pei L, Meng S, Yu W, Wang Q, Song F, Ma L (2016) Inhibition of microRNA-383 ameliorates injury after focal cerebral ischemia via targeting PPARgamma. Cell Physiol Biochem 39(4):1339–1346. https://doi.org/10.1159/000447838

    Article  CAS  PubMed  Google Scholar 

  20. Perez-Rico YA, Barillot E, Shkumatava A (2020) Demarcation of topologically associating domains is uncoupled from enriched CTCF binding in developing zebrafish. iScience 23(5):101046. https://doi.org/10.1016/j.isci.2020.101046

  21. Xu Y, Zhang Q, Yu S, Yang Y, Ding F (2011) The protective effects of chitooligosaccharides against glucose deprivation-induced cell apoptosis in cultured cortical neurons through activation of PI3K/Akt and MEK/ERK1/2 pathways. Brain Res 1375:49–58. https://doi.org/10.1016/j.brainres.2010.12.029

    Article  CAS  PubMed  Google Scholar 

  22. Negishi T, Ishii Y, Kyuwa S, Kuroda Y, Yoshikawa Y (2003) Primary culture of cortical neurons, type-1 astrocytes, and microglial cells from cynomolgus monkey (Macaca fascicularis) fetuses. J Neurosci Methods 131(1-2):133–140. https://doi.org/10.1016/j.jneumeth.2003.08.006

    Article  CAS  PubMed  Google Scholar 

  23. Tian T, Zeng J, Zhao G, Zhao W, Gao S, Liu L (2018) Neuroprotective effects of orientin on oxygen-glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons. Exp Biol Med (Maywood) 243(1):78–86. https://doi.org/10.1177/1535370217737983

    Article  CAS  Google Scholar 

  24. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, Feng J, Charish J et al (2018) RGMa mediates reactive astrogliosis and glial scar formation through TGFbeta1/Smad2/3 signaling after stroke. Cell Death Differ 25(8):1503–1516. https://doi.org/10.1038/s41418-018-0058-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng X, Yang YL, Li WH, Liu M, Wang YH, Du GH (2020) Cerebral ischemia-reperfusion aggravated cerebral infarction injury and possible differential genes identified by RNA-Seq in rats. Brain Res Bull 156:33–42. https://doi.org/10.1016/j.brainresbull.2019.12.014

    Article  CAS  PubMed  Google Scholar 

  26. Chen J, Xuan Y, Chen Y, Wu T, Chen L, Guan H, Yang S, He J et al (2019) Netrin-1 alleviates subarachnoid haemorrhage-induced brain injury via the PPARgamma/NF-KB signalling pathway. J Cell Mol Med 23(3):2256–2262. https://doi.org/10.1111/jcmm.14105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Markus HS, Makela KM, Bevan S, Raitoharju E, Oksala N, Bis JC, O'Donnell C, Hainsworth A et al (2013) Evidence HDAC9 genetic variant associated with ischemic stroke increases risk via promoting carotid atherosclerosis. Stroke 44(5):1220–1225. https://doi.org/10.1161/STROKEAHA.111.000217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu Y, Tan L, Wang X (2019) Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer’s disease. Neurosci Bull 35(5):877–888. https://doi.org/10.1007/s12264-019-00361-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu G, Li N, Zhang Y, Zhang J, Xu R, Wu Y (2019) MicroRNA-383-5p inhibits the progression of gastric carcinoma via targeting HDAC9 expression. Braz J Med Biol Res 52(8):e8341. https://doi.org/10.1590/1414-431X20198341

    Article  PubMed  PubMed Central  Google Scholar 

  30. Watson LA, Wang X, Elbert A, Kernohan KD, Galjart N, Berube NG (2014) Dual effect of CTCF loss on neuroprogenitor differentiation and survival. J Neurosci 34(8):2860–2870. https://doi.org/10.1523/JNEUROSCI.3769-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hirayama T, Tarusawa E, Yoshimura Y, Galjart N, Yagi T (2012) CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons. Cell Rep 2(2):345–357. https://doi.org/10.1016/j.celrep.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  32. Sams DS, Nardone S, Getselter D, Raz D, Tal M, Rayi PR, Kaphzan H, Hakim O et al (2016) Neuronal CTCF Is necessary for basal and experience-dependent gene regulation, memory formation, and genomic structure of BDNF and Arc. Cell Rep 17(9):2418–2430. https://doi.org/10.1016/j.celrep.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  33. Kernohan KD, Vernimmen D, Gloor GB, Berube NG (2014) Analysis of neonatal brain lacking ATRX or MeCP2 reveals changes in nucleosome density, CTCF binding and chromatin looping. Nucleic Acids Res 42(13):8356–8368. https://doi.org/10.1093/nar/gku564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prickett AR, Barkas N, McCole RB, Hughes S, Amante SM, Schulz R, Oakey RJ (2013) Genome-wide and parental allele-specific analysis of CTCF and cohesin DNA binding in mouse brain reveals a tissue-specific binding pattern and an association with imprinted differentially methylated regions. Genome Res 23(10):1624–1635. https://doi.org/10.1101/gr.150136.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yuan Y, Guo Q, Ye Z, Pingping X, Wang N, Song Z (2011) Ischemic postconditioning protects brain from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis through PI3K-Akt pathway. Brain Res 1367:85–93. https://doi.org/10.1016/j.brainres.2010.10.017

    Article  CAS  PubMed  Google Scholar 

  36. Wu CX, Liu R, Gao M, Zhao G, Wu S, Wu CF, Du GH (2013) Pinocembrin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress induced apoptosis. Neurosci Lett 546:57–62. https://doi.org/10.1016/j.neulet.2013.04.060

    Article  CAS  PubMed  Google Scholar 

  37. Su Y, Li F (2016) Endoplasmic reticulum stress in brain ischemia. Int J Neurosci 126(8):681–691. https://doi.org/10.3109/00207454.2015.1059836

    Article  CAS  PubMed  Google Scholar 

  38. Xin Q, Ji B, Cheng B, Wang C, Liu H, Chen X, Chen J, Bai B (2014) Endoplasmic reticulum stress in cerebral ischemia. Neurochem Int 68:18–27. https://doi.org/10.1016/j.neuint.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  39. Shu Q, Fan H, Li SJ, Zhou D, Ma W, Zhao XY, Yan JQ, Wu G (2018) Protective effects of Progranulin against focal cerebral ischemia-reperfusion injury in rats by suppressing endoplasmic reticulum stress and NF-kappaB activation in reactive astrocytes. J Cell Biochem 119(8):6584–6597. https://doi.org/10.1002/jcb.26790

    Article  CAS  PubMed  Google Scholar 

  40. Zeng Z, Huang N, Zhang Y, Wang Y, Su Y, Zhang H, An Y (2020) CTCF inhibits endoplasmic reticulum stress and apoptosis in cardiomyocytes by upregulating RYR2 via inhibiting S100A1. Life Sci 242:117158. https://doi.org/10.1016/j.lfs.2019.117158

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JS designed the study. QH collated the data. WJL and JML carried out data analyses and produced the initial draft of the manuscript. XCC revised the figures. JYZ and SRX contributed to drafting the manuscript. All authors have read and approved the final submitted manuscript.

Corresponding authors

Correspondence to Xiaochang Chen or Shouru Xue.

Ethics declarations

Ethics Approval

This study was approved by the Institutional Review Board of The First Affiliated Hospital of Soochow University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

the authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

SUPPLEMENTARY FIGURE 1

(A) Flow cytometry of apoptosis of neurons upon oe-CTCF or si-CTCF treatment. (B) The apoptosis rate detected by flow cytometry upon sh-CTCF or miR-383-5p inhibitpr treatment. (PNG 336 kb)

High Resolution Image (EPS 2199 kb)

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Han, Q., Li, W. et al. miR-383-5p Regulated by the Transcription Factor CTCF Affects Neuronal Impairment in Cerebral Ischemia by Mediating Deacetylase HDAC9 Activity. Mol Neurobiol 59, 6307–6320 (2022). https://doi.org/10.1007/s12035-022-02840-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02840-4

Keywords

Navigation