Skip to main content

Advertisement

Log in

Lactate and Pyruvate Activate Autophagy and Mitophagy that Protect Cells in Toxic Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Intracellular quality control regulated by autophagy process is important for maintenance of cellular homeostasis. Deregulation of autophagy and more specifically mitophagy leads to accumulation of the misfolded proteins and damaged mitochondria that in turn leads to the cell loss. Alteration of autophagy and mitophagy has shown to be involved in the number of disorders including neurodegenerative diseases. Autophagy and mitophagy could be activated by short-time acidification of the cytosol; however, most of the compounds which can induce it are toxic. Here, we tested several organic compounds which are involved in cellular metabolism on their ability to change intracellular pH and induce mitophagy/autophagy. We have found that lactate and pyruvate are able to reduce intracellular pH in non-toxic concentrations. Short-term (2 h) and long-term (24 h) incubation of the cells with lactate and pyruvateinduced mitophagy and autophagy. Incubation of the SH-SY5Y cells or primary neurons and astrocytes with lactate or pyruvate also activated mitophagy and autophagy after MPP + treatment that led to recovery of mitochondrial function and protection of these cells against apoptotic and necrotic death. Thus, pyruvate- or lactate-induced acidification of cytosol activates cell protective mitophagy and autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM, Rubinsztein DC (2016) Mammalian autophagy: how does it work? Annu Rev Biochem 85:685–713. https://doi.org/10.1146/annurev-biochem-060815-014556

    Article  CAS  PubMed  Google Scholar 

  2. Farre JC, Subramani S (2004) Peroxisome turnover by micropexophagy: an autophagy-related process. Trends Cell Biol 14(9):515–523. https://doi.org/10.1016/j.tcb.2004.07.014

    Article  CAS  PubMed  Google Scholar 

  3. Kaushik S, Massey AC, Mizushima N, Cuervo AM (2008) Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol Biol Cell 19(5):2179–2192. https://doi.org/10.1091/mbc.E07-11-1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Uttenweiler A, Schwarz H, Neumann H, Mayer A (2007) The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell 18(1):166–175. https://doi.org/10.1091/mbc.e06-08-0664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Levine B, Klionsky DJ (2017) Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: breakthroughs in baker’s yeast fuel advances in biomedical research. Proc Natl Acad Sci U S A 114(2):201–205. https://doi.org/10.1073/pnas.1619876114

    Article  CAS  PubMed  Google Scholar 

  6. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462(2):245–253. https://doi.org/10.1016/j.abb.2007.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Y, Liu N, Lu B (2019) Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci Ther 25(7):859–875. https://doi.org/10.1111/cns.13140

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bratic A, Larsson NG (2013) The role of mitochondria in aging. J Clin Invest 123(3):951–957. https://doi.org/10.1172/JCI64125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12(10):685–698. https://doi.org/10.1038/nrc3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Szendroedi J, Phielix E, Roden M (2011) The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 8(2):92–103. https://doi.org/10.1038/nrendo.2011.138

    Article  CAS  PubMed  Google Scholar 

  11. Lezi E, Swerdlow RH (2012) Mitochondria in neurodegeneration. Adv Exp Med Biol 942:269–286. https://doi.org/10.1007/978-94-007-2869-1_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y et al (1998) Mutations in the Parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608. https://doi.org/10.1038/33416

    Article  CAS  PubMed  Google Scholar 

  13. Arano T, Imai Y (2015) Mitophagy regulated by the PINK1-Parkin pathway. In: Ntuli TM (ed) Cell Death. IntechOpen. https://doi.org/10.5772/61284

  14. Van Noorden R, Ledford H (2016) Medicine Nobel for research on how cells “eat themselves.” Nature 538(7623):18–19. https://doi.org/10.1038/nature.2016.20721

    Article  CAS  PubMed  Google Scholar 

  15. Abramov AY, Berezhnov AV, Fedotova EI, Zinchenko VP, Dolgacheva LP (2017) Interaction of misfolded proteins and mitochondria in neurodegenerative disorders. Biochem Soc Trans 45(4):1025–1033. https://doi.org/10.1042/BST20170024

    Article  CAS  PubMed  Google Scholar 

  16. Berezhnov AV, Soutar MP, Fedotova EI, Frolova MS, Plun-Favreau H, Zinchenko VP, Abramov AY (2016) Intracellular pH modulates autophagy and mitophagy. J Biol Chem 291(16):8701–8708. https://doi.org/10.1074/jbc.M115.691774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Behbahan I, McBrian M, Kurdistani S (2014) A protocol for measurement of intracellular pH. Bio-Protocol 4(2). https://doi.org/10.21769/BioProtoc.1027

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  19. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909. https://doi.org/10.1016/s0896-6273(03)00568-3

    Article  CAS  PubMed  Google Scholar 

  20. Riske L, Thomas RK, Baker GB, Dursun SM (2017) Lactate in the brain: an update on its relevance to brain energy, neurons, glia and panic disorder. Ther Adv Psychopharmacol 7(2):85–89. https://doi.org/10.1177/2045125316675579

    Article  CAS  PubMed  Google Scholar 

  21. Lezi E, Swerdlow RH (2016) Lactate’s effect on human neuroblastoma cell bioenergetic fluxes. Biochem Pharmacol 99:88–100. https://doi.org/10.1016/j.bcp.2015.11.002

    Article  CAS  Google Scholar 

  22. Orij R, Postmus J, Ter Beek A, Brul S, Smits GJ (2009) In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155(Pt 1):268–278. https://doi.org/10.1099/mic.0.022038-0

    Article  CAS  PubMed  Google Scholar 

  23. Owens LM, Fralix TA, Murphy E, Cascio WE, Gettes LS (1996) Correlation of ischemia-induced extracellular and intracellular ion changes to cell-to-cell electrical uncoupling in isolated blood-perfused rabbit hearts. Experimental Working Group. Circulation 94(1):10–13. https://doi.org/10.1161/01.cir.94.1.10

    Article  CAS  PubMed  Google Scholar 

  24. Marino ML, Pellegrini P, Di Lernia G, Djavaheri-Mergny M, Brnjic S, Zhang X, Hagg M, Linder S et al (2012) Autophagy is a protective mechanism for human melanoma cells under acidic stress. J Biol Chem 287(36):30664–30676. https://doi.org/10.1074/jbc.M112.339127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Astrand PO, Hallback I, Hedman R, Saltin B (1963) Blood lactates after prolonged severe exercise. J Appl Physiol 18(3):619–622. https://doi.org/10.1152/jappl.1963.18.3.619

    Article  CAS  PubMed  Google Scholar 

  26. Messias LHD, Gobatto CA, Beck WR, Manchado-Gobatto FB (2017) The lactate minimum test: concept, methodological aspects and insights for future investigations in human and animal models. Front Physiol 8:389. https://doi.org/10.3389/fphys.2017.00389

    Article  PubMed  PubMed Central  Google Scholar 

  27. Quistorff B, Secher NH, Van Lieshout JJ (2008) Lactate fuels the human brain during exercise. FASEB J 22(10):3443–3449. https://doi.org/10.1096/fj.08-106104

    Article  CAS  PubMed  Google Scholar 

  28. Gandhi S, Vaarmann A, Yao Z, Duchen MR, Wood NW, Abramov AY (2012) Dopamine induced neurodegeneration in a PINK1 model of Parkinson’s disease. PLoS One 7(5):e37564. https://doi.org/10.1371/journal.pone.0037564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kovac S, Domijan AM, Walker MC, Abramov AY (2012) Prolonged seizure activity impairs mitochondrial bioenergetics and induces cell death. J Cell Sci 125(Pt 7):1796–1806. https://doi.org/10.1242/jcs.099176

    Article  CAS  PubMed  Google Scholar 

  30. Abramov AY, Angelova PR (2019) Cellular mechanisms of complex I-associated pathology. Biochem Soc Trans 47(6):1963–1969. https://doi.org/10.1042/BST20191042

    Article  CAS  PubMed  Google Scholar 

  31. Tauffenberger A, Fiumelli H, Almustafa S, Magistretti PJ (2019) Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling. Cell Death Dis 10(9):653. https://doi.org/10.1038/s41419-019-1877-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Georgakopoulos ND, Frison M, Alvarez MS, Bertrand H, Wells G, Campanella M (2017) Reversible Keap1 inhibitors are preferential pharmacological tools to modulate cellular mitophagy. Sci Rep 7(1):10303. https://doi.org/10.1038/s41598-017-07679-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was funded by The Russian Foundation for Basic Research (RFBR), project number 20–34-70074. This work was also supported by the grant of the Russian Federation government no. 075–15-2019–1877.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this study.

Corresponding author

Correspondence to Alexey V. Berezhnov.

Ethics declarations

Ethics Approval

Animal studies were approved by the Animal Ethics Committee of the Institute of Cell Biophysics, Russian Academy of Sciences, and were performed in compliance with the Russian Federation legislation.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotova, E.I., Dolgacheva, L.P., Abramov, A.Y. et al. Lactate and Pyruvate Activate Autophagy and Mitophagy that Protect Cells in Toxic Model of Parkinson’s Disease. Mol Neurobiol 59, 177–190 (2022). https://doi.org/10.1007/s12035-021-02583-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02583-8

Keywords

Navigation