Skip to main content
Log in

Training Intensity, Not Duration, May Be Key to Upregulating Presynaptic Proteins of Calcium Dynamics and Calcium-Dependent Exocytosis in Fast- and Slow-Twitch Skeletal Muscles, in Addition to Maintaining Performance After Detraining

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 29 December 2021

This article has been updated

Abstract

Neuromuscular adaptations are essential for improving athletic performance. However, little is known about the effect of different endurance training protocols and their subsequent detraining on the gene expression of critical factors for neuromuscular synaptic transmission. Therefore, this study investigated the effects of endurance training (high-intensity interval training [HIIT], continuous [cEND], mixed interval [Mix], and all protocols combined [Comb]) and detraining on performance and gene expression (GE) of the alpha-1a, synaptotagmin II (Syt-II), synaptobrevin II (Vamp2), and acetylcholinesterase (AChE) in the gastrocnemius and soleus of Wistar rats. Eighty rodents were randomly divided into control, HIIT, cEND, Mix, Comb, and detraining groups. The rodents trained for 6 weeks (5 × /week), followed by 2 weeks of detraining. Performance improved in all training groups and decreased following detraining (p < 0.05), except HIIT. In the gastrocnemius, alpha-1a GE was upregulated in the Mix. Syt-II and AChE GE were upregulated in HIIT, Mix, and Comb. Vamp2 GE was upregulated in all groups. In the soleus, alpha-1a GE was upregulated in HIIT, Mix, and Comb. Syt-II and Vamp2 GE were upregulated in all groups. AChE GE was upregulated in cEND, Mix, and Comb. Detraining downregulated mostly the gene expression in the skeletal muscles. We conclude that training intensity appears to be a key factor for the upregulation of molecules involved in neuromuscular synaptic transmission. Such changes occur to be involved in improving running performance. On the other hand, detraining negatively affects synaptic transmission and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be available as necessary.

Code Availability

Not applicable.

Change history

References

  1. Roberts DV (1963) The anatomy and physiology of the neuromuscular junction. Br J Anaesth 35:510–520. https://doi.org/10.1093/bja/35.9.510

    Article  CAS  PubMed  Google Scholar 

  2. Ge D, Noakes PG, Lavidis NA (2020) What are neurotransmitter release sites and do they interact? Neuroscience 425:157–168. https://doi.org/10.1016/j.neuroscience.2019.11.017

    Article  CAS  PubMed  Google Scholar 

  3. Boudier JA, Charvin N, Boudier JL, Fathallah M, Tagaya M, Takahashi M, Seagar MJ (1996) Distribution of components of the SNARE complex in relation to transmitter release sites at the frog neuromuscular junction. Eur J Neurosci 8(3):545–552. https://doi.org/10.1111/j.1460-9568.1996.tb01239.x

    Article  CAS  PubMed  Google Scholar 

  4. He R, Zhang J, Yu Y, Jizi L, Wang W, Li M (2018) New insights into interactions of presynaptic calcium channel subtypes and SNARE proteins in neurotransmitter release. Front Mol Neurosci 11:213. https://doi.org/10.3389/fnmol.2018.00213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu LG, Westenbroek RE, Borst JG, Catterall WA, Sakmann B (1999) Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci 19(2):726–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ladera C, Martín R, Bartolomé-Martín D, Torres M, Sánchez-Prieto J (2009) Partial compensation for N-type Ca2+ channel loss by P/Q-type Ca2+ channels underlines the differential release properties supported by these channels at cerebrocortical nerve terminals. Eur J Neurosci 29(6):1131–1140

    Article  PubMed  Google Scholar 

  7. Davydova D, Marini C, King C, Klueva J, Bischof F, Romorini S, Montenegro-Venegas C, Heine M, Schneider R, Schröder MS, Altrock WD (2014) Bassoon specifically controls presynaptic P/Q-type Ca2+ channels via RIM-binding protein. Neuron 82(1):181–194

    Article  CAS  PubMed  Google Scholar 

  8. Bao H, Das D, Courtney NA, Jiang Y, Briguglio JS, Lou X, Roston D, Cui Q, Chanda B, Chapman ER (2018) Dynamics and number of trans-SNARE complexes determine nascent fusion pore properties. Nature 554(7691):260–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Südhof TC (2012) The presynaptic active zone. Neuron 75(1):11–25

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu J, Mashimo T, Südhof TC (2007) Synaptotagmin-1,-2, and-9: Ca2+ sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54(4):567–581

    Article  CAS  PubMed  Google Scholar 

  11. Zhou Q, Lai Y, Bacaj T, Zhao M, Lyubimov AY, Uervirojnangkoorn M, Zeldin OB, Brewster AS, Sauter NK, Cohen AE, Soltis SM (2015) Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis. Nature 525(7567):62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Diao J, Burré J, Vivona S, Cipriano DJ, Sharma M, Kyoung M, Südhof TC, Brunger AT (2013) Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. Elife 2:e00592

    Article  PubMed  PubMed Central  Google Scholar 

  13. Taylor P, Li Y, Camp S, Rachinsky TL, Ekström T, Getman D, Fuentes ME, Vellom DC, Radić Z (1993) Structure and regulation of expression of the acetylcholinesterase gene. Chem Biol Interact 87(1–3):199–207

    Article  CAS  PubMed  Google Scholar 

  14. Leung KW, Xie HQ, Chen VP, Mok MK, Chu GK, Choi RC, Tsim KW (2009) Restricted localization of proline-rich membrane anchor (PRiMA) of globular form acetylcholinesterase at the neuromuscular junctions–contribution and expression from motor neurons. FEBS J 276(11):3031–3042

    Article  CAS  PubMed  Google Scholar 

  15. Tsim KW, Choi RC, Xie HQ et al (2008) Transcriptional control of different subunits of AChE in muscles: signals triggered by the motor nerve-derived factors. Chem Biol Interact 175(1–3):58–63

    Article  CAS  PubMed  Google Scholar 

  16. Dvir H, Harel M, Bon S et al (2004) The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix. EMBO J 23(22):4394–4405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Falasca C, Perrier N, Massoulie J, Bon S (2005) Determinants of the peptide involved in folding, degradation, and secretion of acetylcholinesterase. J Biol Chem 280(2):878–886

    Article  CAS  PubMed  Google Scholar 

  18. Gorzi A , Rajabi H, Gharakhanlou R, Azad A (2013) Effects of endurance training on a12 acetyl cholinesterase activity in fast and slow-twitch skeletal muscles of male Wistar rats, Zahedan. J Res Med Sci 15(10):e92827

  19. Gaspersic R, Koritnik B, Crne-Finderle N, Sketelj J (1999) Acetyl cholinesterase in the neuromuscular junction. Chem Biol Interact 119–120:301–308

    Article  PubMed  Google Scholar 

  20. Massoulie J, Perrier N, Noureddine H et al (2008) Old and new questions about cholinesterases. Chem Biol Interact 175(1–3):30–44

    Article  CAS  PubMed  Google Scholar 

  21. Fernandes KJ, Kobayashi NR, Jasmin BJ, Tetzlaff W (1998) Acetylcholinesterase gene expression in axotomized rat facial motoneurons is differentially regulated by neurotrophins: correlation with trkB and trkC mRNA levels and isoforms. J Neurosci 18(23):9936–9947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krause Neto W, Ciena AP, Anaruma CA, de Souza RR, Gama EF (2015) Effects of exercise on neuromuscular junction components across age: systematic review of animal experimental studies. BMC Res Notes 8:713. https://doi.org/10.1186/s13104-015-1644-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deschenes MR, Tufts HL, Oh J, Li S, Noronha AL, Adan MA (2020) Effects of exercise training on neuromuscular junctions and their active zones in young and aged muscles. Neurobiol Aging 95:1–8. https://doi.org/10.1016/j.neurobiolaging.2020.07.001

    Article  CAS  PubMed  Google Scholar 

  24. Gorzi A, Jamshidi F, Rahmani A, Neto WK (2020) Muscle gene expression of CGRP-α, CGRP receptor, nAchR-β, and GDNF in response to different endurance training protocols of Wistar rats. Mol Biol Rep 47(7):5305–5314

    Article  CAS  PubMed  Google Scholar 

  25. Franz F, Edgar E, Albert-Georg L, Axel B (2007) G* Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  Google Scholar 

  26. Gorzi A, Rahmani A, Mohammadi Z, Neto WK (2021) Effects of different lengths of high-intensity interval training microcycles on the systemic and hippocampal inflammatory state and antioxidant balance of immature rats. Mol Biol Rep. https://doi.org/10.1007/s11033-021-06484-w

    Article  PubMed  Google Scholar 

  27. Gorzi A, Taherkhani L, Rahmani A (2017) Effect of folate supplementation during 10 weeks of HIIT on serum levels of ghrelin and leptin in male Wistar rats. SJKU 22(5):13–21. https://www.sjku.muk.ac.ir/article-1-3542-en.html

  28. Shepherd R, Gollnick P (1976) Oxygen uptake of rats at different work intensities. Pflugers Arch 362(3):219–222. https://doi.org/10.1007/bf00581173

    Article  CAS  PubMed  Google Scholar 

  29. Copp SW, Hirai DM, Musch TI, Poole DC (2020) Critical speed in the rat: implications for hindlimb muscle blood flow distribution and fibre recruitment. J Physiol 588(24):5077–5087. https://doi.org/10.1113/jphysiol.2010.198382

  30. Armstrong RB, Phelps RO (1984) Muscle fiber type composition of the rat hindlimb. Am J Anat 171(3):259–272. https://doi.org/10.1002/aja.1001710303

  31. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):e45-e. https://doi.org/10.1093/nar/29.9.e45

    Article  Google Scholar 

  32. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research. 30(9):e36-e. https://doi.org/10.1093/nar/30.9.e36

    Article  Google Scholar 

  33. Kinnunen JV, Piitulainen H, Piirainen JM (2019) Neuromuscular adaptations to short-term high-intensity interval training in female ice-hockey players. J Strength Cond Res 33(2):479–485. https://doi.org/10.1519/JSC.0000000000001881

    Article  PubMed  Google Scholar 

  34. Gruber H, Zenker W (1978) Acetylcholinesterase activity in motor nerve fibres in correlation to muscle fibre types in rat. Brain Res 141(2):325–334

    Article  CAS  PubMed  Google Scholar 

  35. Nudler S, Piriz J, Urbano FJ, Rosato-Siri MD, Renteria ES, Uchitel OD (2003) Ca2+ channels and synaptic transmission at the adult, neonatal, and P/Q-type deficient neuromuscular junction. Ann N Y Acad Sci 998(1):11–17

    Article  CAS  PubMed  Google Scholar 

  36. Tsuji K, Ishida H, Oba K, Ueki T, Fujihashi Y (2015) Activity of lower limb muscles during treadmill running at different velocities. J Phys Ther Sci 27(2):353–356

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pang ZP, Melicoff E, Padgett D, Liu Y, Teich AF, Dickey BF, Lin W, Adachi R, Südhof TC (2006) Synaptotagmin-2 is essential for survival and contributes to Ca2+ triggering of neurotransmitter release in central and neuromuscular synapses. J Neurosci 26(52):13493–13504. https://doi.org/10.1523/JNEUROSCI.3519-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. França AP, Schamne MG, de Souza BS, da Luz SD, Bernardelli AK, Corrêa T, de Souza IG, Latini A, da Silva-Santos JE, Canas PM, Cunha RA (2020) Caffeine consumption plus physical exercise improves behavioral impairments and stimulates neuroplasticity in spontaneously hypertensive rats (SHR): an animal model of attention deficit hyperactivity disorder. Mol Neurobiol 57(9):3902–3919

    Article  PubMed  Google Scholar 

  39. Ríos-Kristjánsson JG, Rizo-Roca D, Kristjánsdóttir KM, Núñez-Espinosa CA, Torrella JR, Pagès T, Viscor G (2019) A three-criteria performance score for rats exercising on a running treadmill. Plos One 14(7):e0219167

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schoch S, Deák F, Königstorfer A, Mozhayeva M, Sara Y, Südhof TC, Kavalali ET (2001) SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294(5544):1117–1122. https://doi.org/10.1126/science.1064335

    Article  CAS  PubMed  Google Scholar 

  41. Blotnick E, Anglister L (2016) Exercise modulates synaptic acetylcholinesterase at neuromuscular junctions. Neuroscience 319:221–232. https://doi.org/10.1016/j.neuroscience.2016.01.044

    Article  CAS  PubMed  Google Scholar 

  42. Wen G, Hui W, Dan C, Xiao-Qiong W, Jian-Bin T, Chang-Qi L, De-Liang L, Wei-Jun C, Zhi-Yuan L, Xue-Gang L (2009) The effects of exercise-induced fatigue on acetylcholinesterase expression and activity at rat neuromuscular junctions. Acta Histochem Cytochem 42(5):137–142. https://doi.org/10.1267/ahc.09019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gibala MJ, Bostad W, McCarthy DG (2019) Physiological adaptations to interval training to promote endurance. Curr Opin Physio 1(10):180–184

    Article  Google Scholar 

  44. Creer AR, Ricard MD, Conlee RK, Hoyt GL, Parcell AC (2004) Neural, metabolic, and performance adaptations to four weeks of high intensity sprint—interval training in trained cyclists. Int J Sports Med 25(2):92–98

    Article  CAS  PubMed  Google Scholar 

  45. Polomoshnov D (2017) Acute HIT session induced changes and recovery in muscle activation level, voluntary force production and jump performance during 8 weeks of HIT training in recreationally endurance trained men. University of Jyväskylä. Master’s Thesis: P 57–58. doi:urn.fi/URN:NBN:fi:jyu-201701101120

  46. Holloway K, Roche D, Angell P (2018) Evaluating the progressive cardiovascular health benefits of short-term high-intensity interval training. Eur J Appl Physiol 118:2259–2268

    Article  PubMed  Google Scholar 

  47. Buchheit M, Laursen PB (2013) High-intensity interval training, solutions to the programming puzzle. Sports Med 43(10):927–954. https://doi.org/10.1007/s40279-013-0029-x

    Article  PubMed  Google Scholar 

  48. Obradović J, Vukadinović M, Pantović M, Baić M (2016) HIIT vs moderate intensity endurance training: impact on aerobic parameters in young adult men. Acta Kinesiologica. 10(Suppl. 1):35–40. https://www.bib.irb.hr/865346

  49. NíChéilleachair NJ, Harrison AJ, Warrington GD (2017) HIIT enhances endurance performance and aerobic characteristics more than high-volume training in trained rowers. J Sports Sci 35(11):1052–1058. https://doi.org/10.1080/02640414.2016.1209539

    Article  Google Scholar 

  50. Fitts RH, Widrick JJ (1996) Muscle mechanics: adaptations with exercise-training. Exerc Sport Sci Rev 24:427–473

    Article  CAS  PubMed  Google Scholar 

  51. Mujika I, Padilla S (2001) Muscular characteristics of detraining in humans. Med Sci Sports Exerc 33(8):1297–1303. https://doi.org/10.1097/00005768-200108000-00009

    Article  CAS  PubMed  Google Scholar 

  52. Franchini E, Nunes AV, Moraes JM, Del Vecchio FB (2007) Physical fitness and anthropometrical profile of the Brazilian male judo team. J Physiol Anthropol 26(2):59–67

    Article  PubMed  Google Scholar 

  53. Napolioni V, Persico AM, Porcelli V, Palmieri L (2011) The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: physiological links and abnormalities in autism. Mol Neurobiol 44(1):83–92

    Article  CAS  PubMed  Google Scholar 

  54. Israël M, Dunant Y (1998) Acetylcholine release and the cholinergic genomic locus. Mol Neurobiol 16(1):1–20

    Article  PubMed  Google Scholar 

  55. Bonora M, Patergnani S, Rimessi A, De Marchi E, Suski JM, Bononi A, Giorgi C, Marchi S, Missiroli S, Poletti F, Wieckowski MR (2012) ATP synthesis and storage. Purinergic Signalling 8(3):343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Narici M, Monti E, Franchi M, Sarto F, Reggiani C, Toniolo L, … Pisot R (2020) Biomarkers of muscle atrophy and of neuromuscular maladaptation during 10-day bed rest. Eur J Transl Myol 30(1):23–24

  57. Narici M, De Vito G, Franchi M, Paoli A, Moro T, Marcolin G, Grassi B, Baldassarre G et al (2020) Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. Eur J Sport Sci 1–22

  58. Madsen K, Pedersen PK, Djurhuus MS, Klitgaard NA (1993) Effects of detraining on endurance capacity and metabolic changes during prolonged exhaustive exercise. J Appl Physiol 75(4):1444–1451

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Fatemeh Jafari and Nasrin Allahmoradi have received in part research grants from the University of Zanjan. This project was supported partly by the University of Zanjan.

Author information

Authors and Affiliations

Authors

Contributions

AG, FJ, NA, and AR constructed the research question and method, trained the rodents, collected the biological material, analyzed the data, and wrote and approved the final text. Likewise, WKN analyzed the data and wrote and approved the final text.

Corresponding authors

Correspondence to Ali Gorzi or Walter Krause Neto.

Ethics declarations

Ethics Approval

The Institutional Animal Ethics Committee of the Sport Sciences Research Institute of Iran approved this work (protocol code: IR.SSRI.REC.1399.759).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorzi, A., Jafari, F., Allahmoradi, N. et al. Training Intensity, Not Duration, May Be Key to Upregulating Presynaptic Proteins of Calcium Dynamics and Calcium-Dependent Exocytosis in Fast- and Slow-Twitch Skeletal Muscles, in Addition to Maintaining Performance After Detraining. Mol Neurobiol 58, 6670–6683 (2021). https://doi.org/10.1007/s12035-021-02576-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02576-7

Keywords

Navigation