Skip to main content
Log in

Reactive Fibroblasts in Response to Optic Nerve Crush Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Traumatic optic neuropathy leads to bidirectional degeneration of retinal ganglion cells and axons and results in optic nerve scaring, which inhibits the regeneration of damaged axons. Compared with its glial counterpart, the fibrotic response causing nerve scar tissue is poorly permissive to axonal regeneration. Using collagen1α1-GFP reporter mice, we characterize the development of fibrotic scar formation following optic nerve crush injury. We observe that perivascular collagen1α1 cells constitute a major cellular component of the fibrotic scar. We demonstrate that extracellular molecules and monocytes are key factors contributing to the pathogenesis of optic nerve fibrotic scar formation, with a previously unrecognized encapsulation of this scar. We also characterize the distribution of collagen1α1 cells in the retina after optic nerve crush injury based on in vivo and whole-mount retinal imaging. Our results identify collagen1α1 cells as a major component of fibrotic scarring following ONC and are a potential molecular target for promoting axonal regeneration after optic nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holt GR, Holt JE (1983) Incidence of eye injuries in facial fractures: an analysis of 727 cases. Otolaryngol Head Neck Surg 91(3):276–279. https://doi.org/10.1177/019459988309100313

    Article  CAS  PubMed  Google Scholar 

  2. Thanos S, Bohm MR, Schallenberg M, Oellers P (2012) Traumatology of the optic nerve and contribution of crystallins to axonal regeneration. Cell Tissue Res 349(1):49–69. https://doi.org/10.1007/s00441-012-1442-4

    Article  CAS  PubMed  Google Scholar 

  3. Tran AP, Warren PM, Silver J (2018) The biology of regeneration failure and success after spinal cord injury. Physiol Rev 98(2):881–917. https://doi.org/10.1152/physrev.00017.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chaon BC, Lee MS (2015) Is there treatment for traumatic optic neuropathy? Curr Opin Ophthalmol 26(6):445–449. https://doi.org/10.1097/ICU.0000000000000198

    Article  PubMed  Google Scholar 

  5. Yan W, Chen Y, Qian Z, Selva D, Pelaez D, Tu Y, Wu W (2017) Incidence of optic canal fracture in the traumatic optic neuropathy and its effect on the visual outcome. Br J Ophthalmol 101(3):261–267. https://doi.org/10.1136/bjophthalmol-2015-308043

    Article  PubMed  Google Scholar 

  6. Chierzi S, Strettoi E, Cenni MC, Maffei L (1999) Optic nerve crush: Axonal responses in wild-type and bcl-2 transgenic mice. J Neurosci 19(19):8367–8376

    Article  CAS  Google Scholar 

  7. Levkovitch-Verbin H (2004) Animal models of optic nerve diseases. Eye (Lond) 18(11):1066–1074. https://doi.org/10.1038/sj.eye.6701576

    Article  CAS  Google Scholar 

  8. Xue F, Wu K, Wang T, Cheng Y, Jiang M, Ji J (2016) Morphological and functional changes of the optic nerve following traumatic optic nerve injuries in rabbits. Biomed Rep 4(2):188–192. https://doi.org/10.3892/br.2016.567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eming SA, Martin P, Tomic-Canic M (2014) Wound repair and regeneration: mechanisms, signaling, and translation. Science translational medicine 6(265):265sr266. https://doi.org/10.1126/scitranslmed.3009337

    Article  CAS  Google Scholar 

  10. Kawano H, Kimura-Kuroda J, Komuta Y, Yoshioka N, Li HP, Kawamura K, Li Y, Raisman G (2012) Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res 349(1):169–180. https://doi.org/10.1007/s00441-012-1336-5

    Article  PubMed  PubMed Central  Google Scholar 

  11. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156. https://doi.org/10.1038/nrn1326

    Article  CAS  PubMed  Google Scholar 

  12. Bundesen LQ, Scheel TA, Bregman BS, Kromer LF (2003) Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurosci 23(21):7789–7800

    Article  CAS  Google Scholar 

  13. Tang X, Davies JE, Davies SJ (2003) Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue. J Neurosci Res 71(3):427–444. https://doi.org/10.1002/jnr.10523

    Article  CAS  PubMed  Google Scholar 

  14. Dias DO, Goritz C (2018) Fibrotic scarring following lesions to the central nervous system. Matrix Biol 68-69:561–570. https://doi.org/10.1016/j.matbio.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  15. Dias DO, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlen M, Goritz C, Frisen J (2018) Reducing pericyte-derived scarring promotes recovery after spinal cord injury. Cell 173(1):153–165 e122. https://doi.org/10.1016/j.cell.2018.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laredo F, Plebanski J, Tedeschi A (2019) Pericytes: problems and promises for CNS repair. Front Cell Neurosci 13:546. https://doi.org/10.3389/fncel.2019.00546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soderblom C, Luo X, Blumenthal E, Bray E, Lyapichev K, Ramos J, Krishnan V, Lai-Hsu C et al (2013) Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci 33(34):13882–13887. https://doi.org/10.1523/JNEUROSCI.2524-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yata Y, Scanga A, Gillan A, Yang L, Reif S, Breindl M, Brenner DA, Rippe RA (2003) DNase I-hypersensitive sites enhance alpha1(I) collagen gene expression in hepatic stellate cells. Hepatology 37(2):267–276. https://doi.org/10.1053/jhep.2003.50067

    Article  CAS  PubMed  Google Scholar 

  19. Liu Y, Tapia ML, Yeh J, He RC, Pomerleu D, Lee RK (2019) Differential gamma-synuclein expression in acute and chronic retinal ganglion cell death in the retina and optic nerve. Mol Neurobiol 57:698–709. https://doi.org/10.1007/s12035-019-01735-1

    Article  CAS  PubMed  Google Scholar 

  20. Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L et al (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322(5903):963–966. https://doi.org/10.1126/science.1161566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adams KL, Gallo V (2018) The diversity and disparity of the glial scar. Nat Neurosci 21(1):9–15. https://doi.org/10.1038/s41593-017-0033-9

    Article  CAS  PubMed  Google Scholar 

  22. Hesp ZC, Yoseph RY, Suzuki R, Jukkola P, Wilson C, Nishiyama A, McTigue DM (2018) Proliferating NG2-cell-dependent angiogenesis and scar formation alter axon growth and functional recovery after spinal cord injury in mice. J Neurosci 38(6):1366–1382. https://doi.org/10.1523/JNEUROSCI.3953-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moeendarbary E, Weber IP, Sheridan GK, Koser DE, Soleman S, Haenzi B, Bradbury EJ, Fawcett J et al (2017) The soft mechanical signature of glial scars in the central nervous system. Nat Commun 8:14787. https://doi.org/10.1038/ncomms14787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J (2011) A pericyte origin of spinal cord scar tissue. Science 333(6039):238–242. https://doi.org/10.1126/science.1203165

    Article  CAS  PubMed  Google Scholar 

  25. de Pablo Y, Marasek P, Pozo-Rodrigalvarez A, Wilhelmsson U, Inagaki M, Pekna M, Pekny M (2019) Vimentin phosphorylation is required for Normal cell division of immature astrocytes. Cells 8(9). https://doi.org/10.3390/cells8091016

  26. Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18(7):942–952. https://doi.org/10.1038/nn.4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pekny M, Johansson CB, Eliasson C, Stakeberg J, Wallen A, Perlmann T, Lendahl U, Betsholtz C et al (1999) Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 145(3):503–514. https://doi.org/10.1083/jcb.145.3.503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng F, Shen Y, Mohanasundaram P, Lindstrom M, Ivaska J, Ny T, Eriksson JE (2016) Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-beta-slug signaling. Proc Natl Acad Sci U S A 113(30):E4320–E4327. https://doi.org/10.1073/pnas.1519197113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Verardo MR, Lewis GP, Takeda M, Linberg KA, Byun J, Luna G, Wilhelmsson U, Pekny M et al (2008) Abnormal reactivity of muller cells after retinal detachment in mice deficient in GFAP and vimentin. Invest Ophthalmol Vis Sci 49(8):3659–3665. https://doi.org/10.1167/iovs.07-1474

    Article  PubMed  PubMed Central  Google Scholar 

  30. Menet V, Prieto M, Privat A, Gimenez y Ribotta M (2003) Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc Natl Acad Sci U S A 100(15):8999–9004. https://doi.org/10.1073/pnas.1533187100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karadottir R, Attwell D (2007) Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 145(4):1426–1438. https://doi.org/10.1016/j.neuroscience.2006.08.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao X, Ahram A, Berman RF, Muizelaar JP, Lyeth BG (2003) Early loss of astrocytes after experimental traumatic brain injury. Glia 44(2):140–152. https://doi.org/10.1002/glia.10283

    Article  PubMed  Google Scholar 

  33. Gorovits R, Avidan N, Avisar N, Shaked I, Vardimon L (1997) Glutamine synthetase protects against neuronal degeneration in injured retinal tissue. Proc Natl Acad Sci U S A 94(13):7024–7029. https://doi.org/10.1073/pnas.94.13.7024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo X, Yang S, Liang J, Zhai Y, Shen M, Sun J, Feng Y, Lu X et al (2018) Choroidal pericytes promote subretinal fibrosis after experimental photocoagulation. Dis Model Mech 11(4):dmm032060. https://doi.org/10.1242/dmm.032060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173(6):1617–1627. https://doi.org/10.2353/ajpath.2008.080433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu Y, Soderblom C, Trojanowsky M, Lee DH, Lee JK (2015) Fibronectin matrix assembly after spinal cord injury. J Neurotrauma 32(15):1158–1167. https://doi.org/10.1089/neu.2014.3703

    Article  PubMed  PubMed Central  Google Scholar 

  37. Danen EH, Yamada KM (2001) Fibronectin, integrins, and growth control. J Cell Physiol 189(1):1–13. https://doi.org/10.1002/jcp.1137

    Article  CAS  PubMed  Google Scholar 

  38. To WS, Midwood KS (2011) Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogenesis Tissue Repair 4:21. https://doi.org/10.1186/1755-1536-4-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209(2):294–301. https://doi.org/10.1016/j.expneurol.2007.05.014

    Article  CAS  PubMed  Google Scholar 

  40. Brazda N, Muller HW (2009) Pharmacological modification of the extracellular matrix to promote regeneration of the injured brain and spinal cord. Prog Brain Res 175:269–281. https://doi.org/10.1016/S0079-6123(09)17518-0

    Article  CAS  PubMed  Google Scholar 

  41. Cooper JG, Jeong SJ, McGuire TL, Sharma S, Wang W, Bhattacharyya S, Varga J, Kessler JA (2018) Fibronectin EDA forms the chronic fibrotic scar after contusive spinal cord injury. Neurobiol Dis 116:60–68. https://doi.org/10.1016/j.nbd.2018.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Condic ML, Lemons ML (2002) Extracellular matrix in spinal cord regeneration: getting beyond attraction and inhibition. Neuroreport 13(3):A37–A48. https://doi.org/10.1097/00001756-200203040-00002

    Article  CAS  PubMed  Google Scholar 

  43. Haga A, Takahashi E, Inomata Y, Kawahara K, Tanihara H (2016) Differentiated expression patterns and phagocytic activities of type 1 and 2 microglia. Invest Ophthalmol Vis Sci 57(6):2814–2823. https://doi.org/10.1167/iovs.15-18509

    Article  CAS  PubMed  Google Scholar 

  44. Qu J, Jakobs TC (2013) The time course of gene expression during reactive gliosis in the optic nerve. PLoS One 8(6):e67094. https://doi.org/10.1371/journal.pone.0067094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tonari M, Kurimoto T, Horie T, Sugiyama T, Ikeda T, Oku H (2012) Blocking endothelin-B receptors rescues retinal ganglion cells from optic nerve injury through suppression of neuroinflammation. Invest Ophthalmol Vis Sci 53(7):3490–3500. https://doi.org/10.1167/iovs.11-9415

    Article  CAS  PubMed  Google Scholar 

  46. Jeong SJ, Cooper JG, Ifergan I, McGuire TL, Xu D, Hunter Z, Sharma S, McCarthy D et al (2017) Intravenous immune-modifying nanoparticles as a therapy for spinal cord injury in mice. Neurobiol Dis 108:73–82. https://doi.org/10.1016/j.nbd.2017.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yokota K, Kobayakawa K, Saito T, Hara M, Kijima K, Ohkawa Y, Harada A, Okazaki K et al (2017) Periostin promotes scar formation through the interaction between pericytes and infiltrating monocytes/macrophages after spinal cord injury. Am J Pathol 187(3):639–653. https://doi.org/10.1016/j.ajpath.2016.11.010

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Bascom Palmer Eye Institute is supported by the NIH Center Core Grant P30EY014801 and a Research to Prevent Blindness Unrestricted Grant. R.K. Lee is supported by the Walter G. Ross Foundation. This work was partly supported by the Gutierrez Family Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard K. Lee.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Statement on the Welfare of Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice of the University of Miami Institutional Animal Care and Use Committee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplemental Fig. 1

Time course of GS distribution throughout the ON following ONC injury. GS negative area was marked with blue dotted line. The fibrotic scar was marked with yellow dotted line. d-i At 3 dpi and 7 dpi, a large area with absence of GS expression was observed with a faint border (marked with blue dotted lines), while accumulation of Col1α1+-GFP expressing cells were present in the ONC crush site. j-o By 10 dpi and 14 dpi, a clearly demarcated GS deficient area was observed at the ONC lesion site with fibrotic components expressed within the area. Scale bar, 200 μm. (PNG 2941 kb)

High Resolution Image (TIF 12110 kb)

Supplemental Fig. 2

Time course of vimentin distribution throughout the ON following ONC injury. Lesion area stained by vimentin was marked with blue dotted line, the fibrotic scar was marked with white dotted line. a-c In the uninjured optic nerve, an even distribution of fibrillary patterned vimentin was present throughout the ON. d-f At 3 dpi, a faint border of vimentin deficient area was observed (marked with blue dotted line) with residual vimentin expression within the lesion area, while infiltrating Col1α1+-GFP positive cells began to appear in the scar center. g-i At 7 dpi, a number of vimentin expressing cells together with Col1α1+-GFP cells were observed at the center of the lesion site, but vimentin and Col1α1+-GFP expressing cells are entirely not co-localized. j-o By 10 dpi and 14 dpi, as the Col1α1+-GFP cells form an encapsulated fibrotic scar (k, n), a cluster of high density vimentin expressing cells are present at the fibrotic scar area. Scale bar, 200 μm. (PNG 2454 kb)

High Resolution Image (TIF 11297 kb)

Supplemental Fig. 3

Distribution of F4/80 in the mature fibrotic scar. F4/80+ cells accumulate at the ONC site acutely and reach a peak within the ONC fibrotic scar region by 10 dpi, some F4/80+ cells are also expressed around the fibrotic scar, Col1α1+ cells do not co-express F4/80. (PNG 2066 kb)

High Resolution Image (TIF 5981 kb)

Supplemental Fig. 4

Time course of Col1α1+-GFP (green), CD13 (red) and PDGFR-ß (magenta) expression in the whole-mount retina images. a-e Col1α1+-GFP expressing cells decreased significantly between 10dpi to 14dpi. CD13 (f-j) and PDGFR-ß expressing cells (k-o) did not show significant changes following ONC injury. (PNG 2119 kb)

High Resolution Image (TIF 8977 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, Y., Jin, H. et al. Reactive Fibroblasts in Response to Optic Nerve Crush Injury. Mol Neurobiol 58, 1392–1403 (2021). https://doi.org/10.1007/s12035-020-02199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02199-4

Keywords

Navigation