Skip to main content

Advertisement

Log in

Histone Deacetylases Contribute to Excitotoxicity-Triggered Degeneration of Retinal Ganglion Cells In Vivo

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Excitotoxicity is known to modulate the nuclear accumulation, and thus activity state, of histone deacetylases (HDACs) in pyramidal neurons. In the retina, deregulation in activity and expression of different HDACs has been linked to pathological conditions such as retinitis pigmentosa, retinal ischemia, glaucoma, and acute optic nerve injury. Up to now, however, the effects of in vivo excitotoxicity on the different HDACs in retinal ganglion cells (RGCs) have not been thoroughly investigated. Here, we injected adult mice intravitreally with N-methyl-D-aspartate (NMDA) as a mean to trigger excitotoxicity-mediated RGC degeneration and we detected time-dependent loss of RGCs at 1 and 7 days after the insult. Further, we characterized the subcellular localization of HDACs belonging to class I (HDAC1, HDAC3), IIa (HDAC4, HDAC5, HDAC7, HDAC9), IIb (HDAC6, HDAC10), and IV (HDAC11) in RGCs. Our analyses revealed a differential pattern of HDACs nuclear distribution in RGCs following excitotoxicity. After 1 day, HDAC3, HDAC5, HDAC6, HDAC7, and HDAC11 showed altered subcellular localization in RGCs while 7 days after the excitotoxic insult, HDAC4 and HDAC9 were the only HDACs displaying changes in their subcellular distribution. Moreover, we found that in vivo selective inhibition of HDAC1/3 or HDAC4/5 via MS-275 (entinostat) or LMK-235, respectively, could prevent ongoing RGC degeneration. In conclusion, our results point towards a role of HDACs in RGC degeneration and identify HDAC1/3 and HDAC4/5 as potential therapeutic targets to treat degenerative retinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395. https://doi.org/10.1038/cr.2011.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Peserico A, Simone C (2011) Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol 2011:371832. https://doi.org/10.1155/2011/371832

    Article  CAS  PubMed  Google Scholar 

  3. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6(4):a018713. https://doi.org/10.1101/cshperspect.a018713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42. https://doi.org/10.1038/nrg2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clocchiatti A, Florean C, Brancolini C (2011) Class IIa HDACs: from important roles in differentiation to possible implications in tumourigenesis. J Cell Mol Med 15(9):1833–1846. https://doi.org/10.1111/j.1582-4934.2011.01321.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee YS, Lim KH, Guo X, Kawaguchi Y, Gao Y, Barrientos T, Ordentlich P, Wang XF et al (2008) The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis. Cancer Res 68(18):7561–7569. https://doi.org/10.1158/0008-5472.can-08-0188

  7. Tong JJ, Liu J, Bertos NR, Yang XJ (2002) Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucleic Acids Res 30(5):1114–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bazou D, Ng MR, Song JW, Chin SM, Maimon N, Munn LL (2016) Flow-induced HDAC1 phosphorylation and nuclear export in angiogenic sprouting. Sci Rep 6:34046. https://doi.org/10.1038/srep34046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Riolo MT, Cooper ZA, Holloway MP, Cheng Y, Bianchi C, Yakirevich E, Ma L, Chin YE et al (2012) Histone deacetylase 6 (HDAC6) deacetylates survivin for its nuclear export in breast cancer. J Biol Chem 287(14):10885–10893. https://doi.org/10.1074/jbc.M111.308791

  10. Winkler AR, Nocka KN, Williams CM (2012) Smoke exposure of human macrophages reduces HDAC3 activity, resulting in enhanced inflammatory cytokine production. Pulm Pharmacol Ther 25(4):286–292. https://doi.org/10.1016/j.pupt.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  11. Yang Y, Huang Y, Wang Z, Wang HT, Duan B, Ye D, Wang C, Jing R et al (2016) HDAC10 promotes lung cancer proliferation via AKT phosphorylation. Oncotarget 7(37):59388–59401. https://doi.org/10.18632/oncotarget.10673

  12. Zhao X, Ito A, Kane CD, Liao TS, Bolger TA, Lemrow SM, Means AR, Yao TP (2001) The modular nature of histone deacetylase HDAC4 confers phosphorylation-dependent intracellular trafficking. J Biol Chem 276(37):35042–35048. https://doi.org/10.1074/jbc.M105086200

    Article  CAS  PubMed  Google Scholar 

  13. Chawla S, Vanhoutte P, Arnold FJ, Huang CL, Bading H (2003) Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J Neurochem 85(1):151–159

    Article  CAS  PubMed  Google Scholar 

  14. Schlumm F, Mauceri D, Freitag HE, Bading H (2013) Nuclear calcium signaling regulates nuclear export of a subset of class IIa histone deacetylases following synaptic activity. J Biol Chem 288(12):8074–8084. https://doi.org/10.1074/jbc.M112.432773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696. https://doi.org/10.1038/nrn2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Casson RJ (2006) Possible role of excitotoxicity in the pathogenesis of glaucoma. Clin Exp Ophthalmol 34(1):54–63. https://doi.org/10.1111/j.1442-9071.2006.01146.x

    Article  PubMed  Google Scholar 

  17. Dreyer EB (1998) A proposed role for excitotoxicity in glaucoma. J Glaucoma 7(1):62–67

    Article  CAS  PubMed  Google Scholar 

  18. Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Archi Ophthalmol (Chicago, Ill : 1960) 114(3):299–305

    Article  CAS  Google Scholar 

  19. Hernandez C, Simo R (2012) Neuroprotection in diabetic retinopathy. Curr Diab Rep 12(4):329–337. https://doi.org/10.1007/s11892-012-0284-5

    Article  CAS  PubMed  Google Scholar 

  20. Opere CA, Heruye S, Njie-Mbye YF, Ohia SE, Sharif NA (2018) Regulation of excitatory amino acid transmission in the retina: studies on neuroprotection. J Ocul Pharmacol Ther 34(1–2):107–118. https://doi.org/10.1089/jop.2017.0085

    Article  CAS  PubMed  Google Scholar 

  21. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5(5):405–414. https://doi.org/10.1038/nn835.nn835

  22. Zhang SJ, Steijaert MN, Lau D, Schutz G, Delucinge-Vivier C, Descombes P, Bading H (2007) Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron 53(4):549–562. https://doi.org/10.1016/j.neuron.2007.01.025

    Article  CAS  PubMed  Google Scholar 

  23. Litke C, Bading H, Mauceri D (2018) Histone deacetylase 4 shapes neuronal morphology via a mechanism involving regulation of expression of vascular endothelial growth factor D. J Biol Chem 293(21):8196–8207. https://doi.org/10.1074/jbc.RA117.001613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kassis H, Shehadah A, Chopp M, Roberts C, Zhang ZG (2015) Stroke induces nuclear shuttling of histone deacetylase 4. Stroke 46(7):1909–1915. https://doi.org/10.1161/strokeaha.115.009046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shen X, Chen J, Li J, Kofler J, Herrup K (2016) Neurons in vulnerable regions of the Alzheimer’s disease brain display reduced ATM signaling. eNeuro 3(1). https://doi.org/10.1523/ENEURO.0124-15.2016

  26. Wu Q, Yang X, Zhang L, Zhang Y, Feng L (2017) Nuclear accumulation of histone deacetylase 4 (HDAC4) exerts neurotoxicity in models of Parkinson’s disease. Mol Neurobiol 54(9):6970–6983. https://doi.org/10.1007/s12035-016-0199-2

    Article  CAS  PubMed  Google Scholar 

  27. Yuan H, Denton K, Liu L, Li XJ, Benashski S, McCullough L, Li J (2016) Nuclear translocation of histone deacetylase 4 induces neuronal death in stroke. Neurobiol Dis 91:182–193. https://doi.org/10.1016/j.nbd.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Chen J, Ricupero CL, Hart RP, Schwartz MS, Kusnecov A, Herrup K (2012) Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med 18(5):783–790. https://doi.org/10.1038/nm.2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pelzel HR, Schlamp CL, Nickells RW (2010) Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis. BMC Neurosci 11:62. https://doi.org/10.1186/1471-2202-11-62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmitt HM, Pelzel HR, Schlamp CL, Nickells RW (2014) Histone deacetylase 3 (HDAC3) plays an important role in retinal ganglion cell death after acute optic nerve injury. Mol Neurodegener 9:39. https://doi.org/10.1186/1750-1326-9-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marek L, Hamacher A, Hansen FK, Kuna K, Gohlke H, Kassack MU, Kurz T (2013) Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J Med Chem 56(2):427–436. https://doi.org/10.1021/jm301254q

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki T, Ando T, Tsuchiya K, Fukazawa N, Saito A, Mariko Y, Yamashita T, Nakanishi O (1999) Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J Med Chem 42(15):3001–3003. https://doi.org/10.1021/jm980565u

    Article  CAS  PubMed  Google Scholar 

  33. Choi SY, Kee HJ, Kurz T, Hansen FK, Ryu Y, Kim GR, Lin MQ, Jin L et al (2016) Class I HDACs specifically regulate E-cadherin expression in human renal epithelial cells. J Cell Mol Med 20(12):2289–2298. https://doi.org/10.1111/jcmm.12919

  34. Jaboin J, Wild J, Hamidi H, Khanna C, Kim CJ, Robey R, Bates SE, Thiele CJ (2002) MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res 62(21):6108–6115

    CAS  PubMed  Google Scholar 

  35. Kaplan HJ, Chiang CW, Chen J, Song SK (2010) Vitreous volume of the mouse measured by quantitative high-resolution MRI. Invest Ophthalmol Vis Sci 51(13):4414–4414

    Google Scholar 

  36. Guo W, Naujock M, Fumagalli L, Vandoorne T, Baatsen P, Boon R, Ordovas L, Patel A et al (2017) HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat Commun 8(1):861. https://doi.org/10.1038/s41467-017-00911-y

  37. Depetter Y, Geurs S, De Vreese R, Goethals S, Vandoorn E, Laevens A, Steenbrugge J, Meyer E et al (2019) Selective pharmacological inhibitors of HDAC6 reveal biochemical activity but functional tolerance in cancer models. Int J Cancer. https://doi.org/10.1002/ijc.32169

  38. Sen A, Nelson TJ, Alkon DL (2015) ApoE4 and Abeta oligomers reduce BDNF expression via HDAC nuclear translocation. J Neurosci 35(19):7538–7551. https://doi.org/10.1523/jneurosci.0260-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sucher NJ, Lipton SA, Dreyer EB (1997) Molecular basis of glutamate toxicity in retinal ganglion cells. Vis Res 37(24):3483–3493. https://doi.org/10.1016/S0042-6989(97)00047-3

    Article  CAS  PubMed  Google Scholar 

  40. Shen Y, Liu XL, Yang XL (2006) N-Methyl-D-aspartate receptors in the retina. Mol Neurobiol 34(3):163–179. https://doi.org/10.1385/MN:34:3:163

    Article  CAS  PubMed  Google Scholar 

  41. Lebrun-Julien F, Duplan L, Pernet V, Osswald I, Sapieha P, Bourgeois P, Dickson K, Bowie D et al (2009) Excitotoxic death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. J Neurosci 29(17):5536–5545. https://doi.org/10.1523/JNEUROSCI.0831-09.2009

  42. Li Y, Schlamp CL, Nickells RW (1999) Experimental induction of retinal ganglion cell death in adult mice. Invest Ophthalmol Vis Sci 40(5):1004–1008

    CAS  PubMed  Google Scholar 

  43. Nakanishi N, Tu S, Shin Y, Cui J, Kurokawa T, Zhang D, Chen HS, Tong G et al (2009) Neuroprotection by the NR3A subunit of the NMDA receptor. J Neurosci 29(16):5260–5265. https://doi.org/10.1523/JNEUROSCI.1067-09.2009

  44. Xiang M, Zhou L, Macke JP, Yoshioka T, Hendry SH, Eddy RL, Shows TB, Nathans J (1995) The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci 15(7 Pt 1):4762–4785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cummings BS, Wills LP, Schnellmann RG (2012) Measurement of cell death in mammalian cells. Curr Protoc Pharmacol Chapter12:Unit12 18. https://doi.org/10.1002/0471141755.ph1208s56

    Article  Google Scholar 

  46. Daly C, Yin J, Kennedy BN (2016) Histone deacetylase: therapeutic targets in retinal degeneration. Adv Exp Med Biol 854:455–461. https://doi.org/10.1007/978-3-319-17121-0_61

    Article  CAS  PubMed  Google Scholar 

  47. Schmitt HM, Schlamp CL, Nickells RW (2016) Role of HDACs in optic nerve damage-induced nuclear atrophy of retinal ganglion cells. Neurosci Lett 625:11–15. https://doi.org/10.1016/j.neulet.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  48. Saha A, Tiwari S, Dharmarajan S, Otteson DC, Belecky-Adams TL (2018) Class I histone deacetylases in retinal progenitors and differentiating ganglion cells. Gene Expr Patterns 30:37–48. https://doi.org/10.1016/j.gep.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  49. Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E et al (2008) Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 409(2):581–589. https://doi.org/10.1042/BJ20070779

  50. Hess-Stumpp H, Bracker TU, Henderson D, Politz O (2007) MS-275, a potent orally available inhibitor of histone deacetylases--the development of an anticancer agent. Int J Biochem Cell Biol 39(7–8):1388–1405. https://doi.org/10.1016/j.biocel.2007.02.009

    Article  CAS  PubMed  Google Scholar 

  51. Butler KV, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski AP (2010) Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc 132(31):10842–10846. https://doi.org/10.1021/ja102758v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schori H, Kipnis J, Yoles E, WoldeMussie E, Ruiz G, Wheeler LA, Schwartz M (2001) Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci U S A 98(6):3398–3403. https://doi.org/10.1073/pnas.041609498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schori H, Yoles E, Schwartz M (2001) T-cell-based immunity counteracts the potential toxicity of glutamate in the central nervous system. J Neuroimmunol 119(2):199–204

    Article  CAS  PubMed  Google Scholar 

  54. Bading H (2017) Therapeutic targeting of the pathological triad of extrasynaptic NMDA receptor signaling in neurodegenerations. J Exp Med 214(3):569–578. https://doi.org/10.1084/jem.20161673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schmidt KG, Bergert H, Funk RH (2008) Neurodegenerative diseases of the retina and potential for protection and recovery. Curr Neuropharmacol 6(2):164–178. https://doi.org/10.2174/157015908784533851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6(1):67–70. https://doi.org/10.1038/71555

    Article  CAS  PubMed  Google Scholar 

  57. Hwang JY, Aromolaran KA, Zukin RS (2017) The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat Rev Neurosci 18(6):347–361. https://doi.org/10.1038/nrn.2017.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fan J, Alsarraf O, Dahrouj M, Platt KA, Chou CJ, Rice DS, Crosson CE (2013) Inhibition of HDAC2 protects the retina from ischemic injury. Invest Ophthalmol Vis Sci 54(6):4072–4080. https://doi.org/10.1167/iovs.12-11529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jia H, Pallos J, Jacques V, Lau A, Tang B, Cooper A, Syed A, Purcell J et al (2012) Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington's disease. Neurobiol Dis 46(2):351–361

  60. Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schluter OM, Bradke F, Lu J, Fischer A (2013) Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer’s disease. EMBO Mol Med 5(1):52–63. https://doi.org/10.1002/emmm.201201923

    Article  CAS  PubMed  Google Scholar 

  61. Liu Y, Peng L, Seto E, Huang S, Qiu Y (2012) Modulation of histone deacetylase 6 (HDAC6) nuclear import and tubulin deacetylase activity through acetylation. J Biol Chem 287(34):29168–29174. https://doi.org/10.1074/jbc.M112.371120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Verdel A, Curtet S, Brocard MP, Rousseaux S, Lemercier C, Yoshida M, Khochbin S (2000) Active maintenance of mHDA2/mHDAC6 histone-deacetylase in the cytoplasm. Curr Biol: CB 10(12):747–749

    Article  CAS  PubMed  Google Scholar 

  63. Pelzel HR, Nickells RW (2011) A role for epigenetic changes in the development of retinal neurodegenerative conditions. J Ocul Biol Dis Infor 4(3):104–110. https://doi.org/10.1007/s12177-012-9079-9

    Article  PubMed  Google Scholar 

  64. Hama Y, Katsuki H, Tochikawa Y, Suminaka C, Kume T, Akaike A (2006) Contribution of endogenous glycine site NMDA agonists to excitotoxic retinal damage in vivo. Neurosci Res 56(3):279–285. https://doi.org/10.1016/j.neures.2006.07.008

    Article  CAS  PubMed  Google Scholar 

  65. Pernet V, Bourgeois P, Di Polo A (2007) A role for polyamines in retinal ganglion cell excitotoxic death. J Neurochem 103(4):1481–1490. https://doi.org/10.1111/j.1471-4159.2007.04843.x

    Article  CAS  PubMed  Google Scholar 

  66. Didonna A, Opal P (2015) The promise and perils of HDAC inhibitors in neurodegeneration. Ann Clin Transl Neurol 2(1):79–101. https://doi.org/10.1002/acn3.147

    Article  CAS  PubMed  Google Scholar 

  67. Hadden MJ, Advani A (2018) Histone deacetylase inhibitors and diabetic kidney disease. Int J Mol Sci 19(9). https://doi.org/10.3390/ijms19092630

  68. Ceccacci E, Minucci S (2016) Inhibition of histone deacetylases in cancer therapy: lessons from leukaemia. Br J Cancer 114(6):605–611. https://doi.org/10.1038/bjc.2016.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Subramanian S, Bates SE, Wright JJ, Espinoza-Delgado I, Piekarz RL (2010) Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals (Basel, Switzerland) 3(9):2751–2767. https://doi.org/10.3390/ph3092751

    Article  CAS  Google Scholar 

  70. Biermann J, Grieshaber P, Goebel U, Martin G, Thanos S, Di Giovanni S, Lagreze WA (2010) Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Invest Ophthalmol Vis Sci 51(1):526–534. https://doi.org/10.1167/iovs.09-3903

    Article  PubMed  Google Scholar 

  71. Crosson CE, Mani SK, Husain S, Alsarraf O, Menick DR (2010) Inhibition of histone deacetylase protects the retina from ischemic injury. Invest Ophthalmol Vis Sci 51(7):3639–3645. https://doi.org/10.1167/iovs.09-4538

    Article  PubMed  PubMed Central  Google Scholar 

  72. Alsarraf O, Fan J, Dahrouj M, Chou CJ, Yates PW, Crosson CE (2014) Acetylation preserves retinal ganglion cell structure and function in a chronic model of ocular hypertension. Invest Ophthalmol Vis Sci 55(11):7486–7493. https://doi.org/10.1167/iovs.14-14792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pelzel HR, Schlamp CL, Waclawski M, Shaw MK, Nickells RW (2012) Silencing of Fem1cR3 gene expression in the DBA/2J mouse precedes retinal ganglion cell death and is associated with histone deacetylase activity. Invest Ophthalmol Vis Sci 53(3):1428–1435. https://doi.org/10.1167/iovs.11-8872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chindasub P, Lindsey JD, Duong-Polk K, Leung CK, Weinreb RN (2013) Inhibition of histone deacetylases 1 and 3 protects injured retinal ganglion cells. Invest Ophthalmol Vis Sci 54(1):96–102. https://doi.org/10.1167/iovs.12-10850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim JY, Shen S, Dietz K, He Y, Howell O, Reynolds R, Casaccia P (2010) HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 13(2):180–189. https://doi.org/10.1038/nn.2471

    Article  CAS  PubMed  Google Scholar 

  76. Cao P, Liang Y, Gao X, Zhao MG, Liang GB (2013) Administration of MS-275 improves cognitive performance and reduces cell death following traumatic brain injury in rats. CNS Neurosci Ther 19(5):337–345. https://doi.org/10.1111/cns.12082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Baltan S (2012) Histone deacetylase inhibitors preserve function in aging axons. J Neurochem 123(Suppl 2):108–115. https://doi.org/10.1111/j.1471-4159.2012.07949.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaletsch A, Pinkerneil M, Hoffmann MJ, Jaguva Vasudevan AA, Wang C, Hansen FK, Wiek C, Hanenberg H et al (2018) Effects of novel HDAC inhibitors on urothelial carcinoma cells. Clin Epigenetics 10(1):100. https://doi.org/10.1186/s13148-018-0531-y

  79. Trazzi S, Fuchs C, Viggiano R, De Franceschi M, Valli E, Jedynak P, Hansen FK, Perini G et al (2016) HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder. Hum Mol Genet 25(18):3887–3907. https://doi.org/10.1093/hmg/ddw231

Download references

Acknowledgments

The authors thank Dr. Bettina Buchthal for her help with the establishment of intravitreal injections. DM is a member of the Excellence Cluster CellNetworks at Heidelberg University. Part of the pictures was acquired at the Nikon Imaging Center at Heidelberg University.

Funding

This work was supported by the FOR2325 grant (project 2) and SFB1158 (project A08) of the Deutsche Forschungsgemeinschaft (DFG) to DM, the FRONTIER grant of Heidelberg University to DM, Italian PRIN 2016 (prot. 20152TE5PK to AM), AIRC 2016 (n. 19162 to AM), and PE-2013-02355271 to AM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Mauceri.

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. All procedures were approved by the local governing body for animal welfare (Regierungspräsidium Karlsruhe).

Conflict of Interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. DM is one of the founders and shareholders of FundaMental Pharma GmbH.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1268 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlüter, A., Aksan, B., Fioravanti, R. et al. Histone Deacetylases Contribute to Excitotoxicity-Triggered Degeneration of Retinal Ganglion Cells In Vivo. Mol Neurobiol 56, 8018–8034 (2019). https://doi.org/10.1007/s12035-019-01658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01658-x

Keywords

Navigation