Skip to main content

Advertisement

Log in

Astrocytes and the TGF-β1 Pathway in the Healthy and Diseased Brain: a Double-Edged Sword

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Transforming growth factor betas (TGF-βs) are known as multifunctional growth factors that participate in the regulation of key events of development, disease, and tissue repair. In the brain, TGF-β1 has been widely recognized as an injury-related cytokine, particularly associated with astrocyte scar formation in response to brain injury. In the last decade, however, evidence has indicated that in addition to its role in brain injury, TGF-β1 might be a crucial regulator of cell survival and differentiation, brain homeostasis, angiogenesis, memory formation, and neuronal plasticity. In this review, we will discuss the emerging scenario of TGF-β1 as a key regulator of astrocyte differentiation and function and the implications of TGF-β1 as a novel mediator of cellular interactions in the central nervous system. First, we will discuss the cellular and molecular basis underlying the effect of TGF-β on astrocyte generation and its impact on angiogenesis and blood-brain barrier function. Then, we will focus on the role of astrocytes in the development and remodeling of synapses and the role of TGF-β1 as a new mediator of these events. Furthermore, we present seminal data that contributed to the emerging concept that astrocyte dysfunction might be associated with neurodegenerative diseases, with a special focus on Alzheimer’s disease, and discuss the pros and cons of TGF-β signaling deficits in these processes. Finally, we argue that understanding how astrocytic signals, such as TGF-β1, regulate brain function might offer new insights into human learning, memory, and cognition, and ultimately, this understanding may provide new targets for the treatment of neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AβO:

Aβ oligomers

BBB:

Blood-brain barrier

BDNF:

Brain-derived neurotrophic factor

BLBP:

Brain lipid binding protein

BMP:

Bone morphogenetic protein

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

CNS:

Central nervous system

CR3:

C3 receptor

CREB:

AMP responsive element binding transcription factor

ECM:

Extracellular matrix

ECs:

Endothelial cells

FGFb:

Fibroblast growth factor beta

GDFs:

Growth and differentiation factors

GFAP:

Glial fibrillary acidic protein

GGT:

γ-Glutamyl transferase

GLAST:

Astrocyte-specific glutamate-aspartate transporter

Gpr124:

G protein-coupled endothelial receptor 124

HHT2:

Hereditary hemorrhagic telangiectasia type 2

i.c.v.:

Intracerebroventricular injection

IL-6:

Interleukin 6

JNK:

c-jun-N-terminal kinase

LAP:

Latency-associated peptide

LIF:

Leukemia inhibitory factor

LPS:

Lipopolysaccharide

LTD:

Long-term depression

LTP:

Long-term potentiation

MAPK:

Mitogen-activated protein kinase

NPCs:

Neural progenitor cells

PAI-1:

Plasminogen activator inhibitor-1

PAP:

Perisynaptic astrocyte processes

PD:

Parkinson’s disease

PDGF-b:

Platelet-derived growth factor beta

PI3K:

Phosphatidylinositol-3 kinase

PNVP:

Perivascular neural plexus

PNS:

Peripheral nervous system

RG:

Radial glia cells

RGCs:

Retinal ganglion cells

SASP:

Senescence-associated secretory phenotype

SVZ:

Subventricular zone

TGF-β1:

Transforming growth factor beta one

TβR1:

TGF-β type I receptor

TβR2:

TGF-β type II receptor

TβR3:

TGF-β type III receptor

TNF-α:

Tumor necrosis factor alpha

TSP:

Thrombospondin

VEGF-A:

Vascular endothelial growth factor A

VZ:

Ventricular zone

ZO-1:

Zonula occludens-1

β–Gal:

β-galactosidase

References

  1. Verkhratsky A, Nedergaard M (2018) Physiology of Astroglia. Physiol Rev 98(1):239–389. https://doi.org/10.1152/physrev.00042.2016

    Article  CAS  PubMed  Google Scholar 

  2. Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B (2008) Neocortical glial cell numbers in human brains. Neurobiol Aging 29(11):1754–1762. https://doi.org/10.1016/j.neurobiolaging.2007.04.013

    Article  CAS  PubMed  Google Scholar 

  3. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26(10):523–530. https://doi.org/10.1016/j.tins.2003.08.008

    Article  CAS  PubMed  Google Scholar 

  4. Sun W, Cornwell A, Li J, Peng S, Osorio MJ, Aalling N, Wang S, Benraiss A et al (2017) SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions. J Neurosci 37(17):4493–4507. https://doi.org/10.1523/JNEUROSCI.3199-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clarke LE, Liddelow SA, Chakraborty C, Munch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A 115(8):E1896–E1905. https://doi.org/10.1073/pnas.1800165115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci 31(12):653–659. https://doi.org/10.1016/j.tins.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  8. Feig SL, Haberly LB (2011) Surface-associated astrocytes, not endfeet, form the glia limitans in posterior piriform cortex and have a spatially distributed, not a domain, organization. J Comp Neurol 519(10):1952–1969. https://doi.org/10.1002/cne.22615

    Article  CAS  PubMed  Google Scholar 

  9. Chan-Palay V, Palay SL (1972) The form of velate astrocytes in the cerebellar cortex of monkey and rat: high voltage electron microscopy of rapid Golgi preparations. Z Anat Entwicklungsgesch 138(1):1–19

    CAS  PubMed  Google Scholar 

  10. Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45. https://doi.org/10.1007/978-1-61779-452-0_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29(10):3276–3287. https://doi.org/10.1523/JNEUROSCI.4707-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29(10):547–553. https://doi.org/10.1016/j.tins.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  13. Lavialle M, Aumann G, Anlauf E, Prols F, Arpin M, Derouiche A (2011) Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors. Proc Natl Acad Sci U S A 108(31):12915–12919. https://doi.org/10.1073/pnas.1100957108

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122(4):1164–1171. https://doi.org/10.1172/JCI58644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burda JE, Bernstein AM, Sofroniew MV (2016) Astrocyte roles in traumatic brain injury. Exp Neurol 275(Pt 3):305–315. https://doi.org/10.1016/j.expneurol.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  16. Blondel O, Collin C, McCarran WJ, Zhu S, Zamostiano R, Gozes I, Brenneman DE, McKay RD (2000) A glia-derived signal regulating neuronal differentiation. J Neurosci 20(21):8012–8020

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Goritz C, Mauch DH, Pfrieger FW (2005) Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosci 29(2):190–201. https://doi.org/10.1016/j.mcn.2005.02.006

    Article  CAS  PubMed  Google Scholar 

  18. Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294(5545):1354–1357. https://doi.org/10.1126/science.294.5545.1354

    Article  CAS  PubMed  Google Scholar 

  19. Hu R, Cai WQ, Wu XG, Yang Z (2007) Astrocyte-derived estrogen enhances synapse formation and synaptic transmission between cultured neonatal rat cortical neurons. Neuroscience 144(4):1229–1240. https://doi.org/10.1016/j.neuroscience.2006.09.056

    Article  CAS  PubMed  Google Scholar 

  20. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFalpha. Science 295(5563):2282–2285. https://doi.org/10.1126/science.1067859

    Article  CAS  PubMed  Google Scholar 

  21. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF et al (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120(3):421–433. https://doi.org/10.1016/j.cell.2004.12.020

    Article  CAS  PubMed  Google Scholar 

  22. Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci U S A 97(15):8629–8634

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Koizumi S, Fujishita K, Tsuda M, Shigemoto-Mogami Y, Inoue K (2003) Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures. Proc Natl Acad Sci U S A 100(19):11023–11028. https://doi.org/10.1073/pnas.1834448100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schell MJ, Molliver ME, Snyder SH (1995) D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 92(9):3948–3952

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, Poo M, Duan S (2003) Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci U S A 100(25):15194–15199. https://doi.org/10.1073/pnas.2431073100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH (2006) Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125(4):775–784. https://doi.org/10.1016/j.cell.2006.02.051

    Article  CAS  PubMed  Google Scholar 

  27. Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463(7278):232–236. https://doi.org/10.1038/nature08673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pannasch U, Freche D, Dallerac G, Ghezali G, Escartin C, Ezan P, Cohen-Salmon M, Benchenane K et al (2014) Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci 17(4):549–558. https://doi.org/10.1038/nn.3662

    Article  CAS  PubMed  Google Scholar 

  29. Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18(7):942–952. https://doi.org/10.1038/nn.4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ben Haim L, Rowitch DH (2017) Functional diversity of astrocytes in neural circuit regulation. Nat Rev Neurosci 18(1):31–41. https://doi.org/10.1038/nrn.2016.159

    Article  CAS  PubMed  Google Scholar 

  31. Chai H, Diaz-Castro B, Shigetomi E, Monte E, Octeau JC, Yu X, Cohn W, Rajendran PS et al (2017) Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95(3):531–549 e539. https://doi.org/10.1016/j.neuron.2017.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ (2018) The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep 22(1):269–285. https://doi.org/10.1016/j.celrep.2017.12.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stipursky J, Gomes FC (2007) TGF-beta1/SMAD signaling induces astrocyte fate commitment in vitro: implications for radial glia development. Glia 55(10):1023–1033. https://doi.org/10.1002/glia.20522

    Article  PubMed  Google Scholar 

  34. Spohr TC, Choi JW, Gardell SE, Herr DR, Rehen SK, Gomes FC, Chun J (2008) Lysophosphatidic acid receptor-dependent secondary effects via astrocytes promote neuronal differentiation. J Biol Chem 283(12):7470–7479. https://doi.org/10.1074/jbc.M707758200

    Article  CAS  PubMed  Google Scholar 

  35. Diniz LP, Pereira Matias IC, Garcia M, Alcantara Gomes FC (2014) Astrocytic control of neural circuit formation: Highlights on TGF-beta signaling. Neurochem Int 78:18–27. https://doi.org/10.1016/j.neuint.2014.07.008

    Article  CAS  PubMed  Google Scholar 

  36. Bialas AR, Stevens B (2013) TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci 16(12):1773–1782. https://doi.org/10.1038/nn.3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sultan S, Li L, Moss J, Petrelli F, Casse F, Gebara E, Lopatar J, Pfrieger FW et al (2015) Synaptic integration of adult-born hippocampal neurons is locally controlled by astrocytes. Neuron 88(5):957–972. https://doi.org/10.1016/j.neuron.2015.10.037

    Article  CAS  PubMed  Google Scholar 

  38. Chung WS, Allen NJ, Eroglu C (2015) Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol 7(9):a020370. https://doi.org/10.1101/cshperspect.a020370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Diniz LP, Tortelli V, Matias I, Morgado J, Bergamo Araujo AP, Melo HM, Seixas da Silva GS, Alves-Leon SV et al (2017) Astrocyte transforming growth factor beta 1 protects synapses against Abeta oligomers in Alzheimer’s disease model. J Neurosci 37(28):6797–6809. https://doi.org/10.1523/JNEUROSCI.3351-16.2017

    Article  CAS  PubMed  Google Scholar 

  40. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6):957–967. https://doi.org/10.1016/j.immuni.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  41. Moraes CA, Santos G, de Sampaio e Spohr TC, D’Avila JC, Lima FR, Benjamim CF, Bozza FA, Gomes FC (2015) Activated microglia-induced deficits in excitatory synapses through IL-1beta: implications for cognitive impairment in sepsis. Mol Neurobiol 52(1):653–663. https://doi.org/10.1007/s12035-014-8868-5

    Article  CAS  PubMed  Google Scholar 

  42. Weiss A, Attisano L (2013) The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol 2(1):47–63. https://doi.org/10.1002/wdev.86

    Article  CAS  PubMed  Google Scholar 

  43. de Caestecker M (2004) The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev 15(1):1–11

    PubMed  Google Scholar 

  44. Gantus MA, Alves LM, Stipursky J, Souza EC, Teodoro AJ, Alves TR, Carvalho DP, Martinez AM et al (2011) Estradiol modulates TGF-beta1 expression and its signaling pathway in thyroid stromal cells. Mol Cell Endocrinol 337(1–2):71–79. https://doi.org/10.1016/j.mce.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  45. Massague J, Gomis RR (2006) The logic of TGFbeta signaling. FEBS Lett 580(12):2811–2820. https://doi.org/10.1016/j.febslet.2006.04.033

    Article  CAS  PubMed  Google Scholar 

  46. Tinoco-Veras CM, Santos A, Stipursky J, Meloni M, Araujo APB, Foschetti DA, Lopez-Urena D, Quesada-Gomez C, Leitao RFC, Gomes FCA, Brito GAC (2017) Transforming growth factor beta1/SMAD signaling pathway activation protects the intestinal epithelium from Clostridium difficile toxin A-induced damage. Infect Immun 85(10). https://doi.org/10.1128/IAI.00430-17

  47. Robertson IB, Horiguchi M, Zilberberg L, Dabovic B, Hadjiolova K, Rifkin DB (2015) Latent TGF-beta-binding proteins. Matrix Biol 47:44–53. https://doi.org/10.1016/j.matbio.2015.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Munger JS, Harpel JG, Gleizes PE, Mazzieri R, Nunes I, Rifkin DB (1997) Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int 51(5):1376–1382

    CAS  PubMed  Google Scholar 

  49. Guo X, Wang XF (2009) Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res 19(1):71–88. https://doi.org/10.1038/cr.2008.302

    Article  CAS  PubMed  Google Scholar 

  50. Miyazawa K, Miyazono K (2017) Regulation of TGF-beta family signaling by inhibitory Smads. Cold Spring Harb Perspect Biol 9(3). https://doi.org/10.1101/cshperspect.a022095

    Google Scholar 

  51. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    CAS  PubMed  Google Scholar 

  52. Romao LF, Sousa Vde O, Neto VM, Gomes FC (2008) Glutamate activates GFAP gene promoter from cultured astrocytes through TGF-beta1 pathways. J Neurochem 106(2):746–756. https://doi.org/10.1111/j.1471-4159.2008.05428.x

    Article  CAS  PubMed  Google Scholar 

  53. Stipursky J, Francis D, Gomes FC (2012) Activation of MAPK/PI3K/SMAD pathways by TGF-beta(1) controls differentiation of radial glia into astrocytes in vitro. Dev Neurosci 34(1):68–81. https://doi.org/10.1159/000338108

    Article  CAS  PubMed  Google Scholar 

  54. Javelaud D, Mauviel A (2005) Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene 24(37):5742–5750. https://doi.org/10.1038/sj.onc.1208928

    Article  CAS  PubMed  Google Scholar 

  55. O'Brien CE, Bonanno L, Zhang H, Wyss-Coray T (2015) Beclin 1 regulates neuronal transforming growth factor-beta signaling by mediating recycling of the type I receptor ALK5. Mol Neurodegener 10:69. https://doi.org/10.1186/s13024-015-0065-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brionne TC, Tesseur I, Masliah E, Wyss-Coray T (2003) Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40(6):1133–1145

    CAS  PubMed  Google Scholar 

  57. Colak D, Mori T, Brill MS, Pfeifer A, Falk S, Deng C, Monteiro R, Mummery C et al (2008) Adult neurogenesis requires Smad4-mediated bone morphogenic protein signaling in stem cells. J Neurosci 28(2):434–446. https://doi.org/10.1523/JNEUROSCI.4374-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ageta H, Murayama A, Migishima R, Kida S, Tsuchida K, Yokoyama M, Inokuchi K (2008) Activin in the brain modulates anxiety-related behavior and adult neurogenesis. PLoS One 3(4):e1869. https://doi.org/10.1371/journal.pone.0001869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miller MW (2003) Expression of transforming growth factor-beta in developing rat cerebral cortex: effects of prenatal exposure to ethanol. J Comp Neurol 460(3):410–424. https://doi.org/10.1002/cne.10658

    Article  CAS  PubMed  Google Scholar 

  60. Esposito MS, Piatti VC, Laplagne DA, Morgenstern NA, Ferrari CC, Pitossi FJ, Schinder AF (2005) Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci 25(44):10074–10086. https://doi.org/10.1523/JNEUROSCI.3114-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Diniz LP, Tortelli V, Garcia MN, Araujo AP, Melo HM, Seixas da Silva GS, De Felice FG, Alves-Leon SV, de Souza JM, Romao LF, Castro NG, Gomes FC (2014) Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling. Glia. https://doi.org/10.1002/glia.22713

    PubMed  Google Scholar 

  62. Diniz LP, Almeida JC, Tortelli V, Vargas Lopes C, Setti-Perdigao P, Stipursky J, Kahn SA, Romao LF et al (2012) Astrocyte-induced synaptogenesis is mediated by transforming growth factor beta signaling through modulation of D-serine levels in cerebral cortex neurons. J Biol Chem 287(49):41432–41445. https://doi.org/10.1074/jbc.M112.380824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yi JJ, Barnes AP, Hand R, Polleux F, Ehlers MD (2010) TGF-beta signaling specifies axons during brain development. Cell 142(1):144–157. https://doi.org/10.1016/j.cell.2010.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stipursky J, Francis D, Dezonne RS, Bergamo de Araujo AP, Souza L, Moraes CA, Alcantara Gomes FC (2014) TGF-beta1 promotes cerebral cortex radial glia-astrocyte differentiation in vivo. Front Cell Neurosci 8:393. https://doi.org/10.3389/fncel.2014.00393

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sousa Vde O, Romao L, Neto VM, Gomes FC (2004) Glial fibrillary acidic protein gene promoter is differently modulated by transforming growth factor-beta 1 in astrocytes from distinct brain regions. Eur J Neurosci 19(7):1721–1730. https://doi.org/10.1111/j.1460-9568.2004.03249.x

    Article  PubMed  Google Scholar 

  66. Hellbach N, Weise SC, Vezzali R, Wahane SD, Heidrich S, Roidl D, Pruszak J, Esser JS et al (2014) Neural deletion of Tgfbr2 impairs angiogenesis through an altered secretome. Hum Mol Genet 23(23):6177–6190. https://doi.org/10.1093/hmg/ddu338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hirota S, Clements TP, Tang LK, Morales JE, Lee HS, Oh SP, Rivera GM, Wagner DS et al (2015) Neuropilin 1 balances beta8 integrin-activated TGFbeta signaling to control sprouting angiogenesis in the brain. Development 142(24):4363–4373. https://doi.org/10.1242/dev.113746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Siqueira M, Francis D, Gisbert D, Gomes FCA, Stipursky J (2017) Radial glia cells control angiogenesis in the developing cerebral cortex through TGF-beta1 signaling. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0557-8

  69. Mecha M, Rabadan MA, Pena-Melian A, Valencia M, Mondejar T, Blanco MJ (2008) Expression of TGF-betas in the embryonic nervous system: analysis of interbalance between isoforms. Dev Dyn 237(6):1709–1717. https://doi.org/10.1002/dvdy.21558

    Article  CAS  PubMed  Google Scholar 

  70. Galter D, Bottner M, Unsicker K (1999) Developmental regulation of the serotonergic transmitter phenotype in rostral and caudal raphe neurons by transforming growth factor-betas. J Neurosci Res 56(5):531–538. https://doi.org/10.1002/(SICI)1097-4547(19990601)56:5<531::AID-JNR8>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  71. Böttner M, Krieglstein K, Unsicker K (2000) The transforming growth factor-βs: structure, signaling, and roles in nervous system development and functions. J Neurochem 75(6):2227–2240

    PubMed  Google Scholar 

  72. Bottner M, Unsicker K, Suter-Crazzolara C (1996) Expression of TGF-beta type II receptor mRNA in the CNS. Neuroreport 7(18):2903–2907

    CAS  PubMed  Google Scholar 

  73. Tomoda T, Shirasawa T, Yahagi YI, Ishii K, Takagi H, Furiya Y, Arai KI, Mori H et al (1996) Transforming growth factor-beta is a survival factor for neonate cortical neurons: coincident expression of type I receptors in developing cerebral cortices. Dev Biol 179(1):79–90. https://doi.org/10.1006/dbio.1996.0242

    Article  CAS  PubMed  Google Scholar 

  74. Vivien D, Bernaudin M, Buisson A, Divoux D, MacKenzie ET, Nouvelot A (1998) Evidence of type I and type II transforming growth factor-beta receptors in central nervous tissues: changes induced by focal cerebral ischemia. J Neurochem 70(6):2296–2304

    CAS  PubMed  Google Scholar 

  75. de Sampaio e Spohr TC, Martinez R, da Silva EF, Neto VM, Gomes FC (2002) Neuro-glia interaction effects on GFAP gene: a novel role for transforming growth factor-beta1. Eur J Neurosci 16(11):2059–2069

    PubMed  Google Scholar 

  76. Goumans MJ, Mummery C (2000) Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 44(3):253–265

    CAS  PubMed  Google Scholar 

  77. Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121(6):1845–1854

    CAS  PubMed  Google Scholar 

  78. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359(6397):693–699. https://doi.org/10.1038/359693a0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB et al (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 90(2):770–774

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K et al (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A 97(6):2626–2631

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Oshima M, Oshima H, Taketo MM (1996) TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179(1):297–302. https://doi.org/10.1006/dbio.1996.0259

    Article  CAS  PubMed  Google Scholar 

  82. Arnold TD, Niaudet C, Pang MF, Siegenthaler J, Gaengel K, Jung B, Ferrero GM, Mukouyama YS et al (2014) Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking alphaVbeta8-TGFbeta signaling in the brain. Development 141(23):4489–4499. https://doi.org/10.1242/dev.107193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Koeglsperger T, Li S, Brenneis C, Saulnier JL, Mayo L, Carrier Y, Selkoe DJ, Weiner HL (2013) Impaired glutamate recycling and GluN2B-mediated neuronal calcium overload in mice lacking TGF-beta1 in the CNS. Glia 61(6):985–1002. https://doi.org/10.1002/glia.22490

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184. https://doi.org/10.1146/annurev.neuro.051508.135600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stipursky J, Romao L, Tortelli V, Neto VM, Gomes FC (2011) Neuron-glia signaling: implications for astrocyte differentiation and synapse formation. Life Sci 89(15–16):524–531. https://doi.org/10.1016/j.lfs.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  86. Hebert JM, Fishell G (2008) The genetics of early telencephalon patterning: some assembly required. Nat Rev Neurosci 9(9):678–685. https://doi.org/10.1038/nrn2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Toresson H, Potter SS, Campbell K (2000) Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127(20):4361–4371

    CAS  PubMed  Google Scholar 

  88. Stoykova A, Treichel D, Hallonet M, Gruss P (2000) Pax6 modulates the dorsoventral patterning of the mammalian telencephalon. J Neurosci 20(21):8042–8050

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kriegstein AR, Gotz M (2003) Radial glia diversity: a matter of cell fate. Glia 43(1):37–43. https://doi.org/10.1002/glia.10250

    Article  PubMed  Google Scholar 

  90. Pinto L, Gotz M (2007) Radial glial cell heterogeneity—the source of diverse progeny in the CNS. Prog Neurobiol 83(1):2–23. https://doi.org/10.1016/j.pneurobio.2007.02.010

    Article  CAS  PubMed  Google Scholar 

  91. deAzevedo LC, Fallet C, Moura-Neto V, Daumas-Duport C, Hedin-Pereira C, Lent R (2003) Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes. J Neurobiol 55(3):288–298. https://doi.org/10.1002/neu.10205

    Article  PubMed  Google Scholar 

  92. Freeman MR, Rowitch DH (2013) Evolving concepts of gliogenesis: a look way back and ahead to the next 25 years. Neuron 80(3):613–623. https://doi.org/10.1016/j.neuron.2013.10.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schmechel DE, Rakic P (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol (Berl) 156(2):115–152

    CAS  Google Scholar 

  94. Takahashi T, Misson JP, Caviness VS Jr (1990) Glial process elongation and branching in the developing murine neocortex: a qualitative and quantitative immunohistochemical analysis. J Comp Neurol 302(1):15–28. https://doi.org/10.1002/cne.903020103

    Article  CAS  PubMed  Google Scholar 

  95. Voigt T (1989) Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol 289(1):74–88. https://doi.org/10.1002/cne.902890106

    Article  CAS  PubMed  Google Scholar 

  96. Masjosthusmann S, Becker D, Petzuch B, Klose J, Siebert C, Deenen R, Barenys M, Baumann J et al (2018) A transcriptome comparison of time-matched developing human, mouse and rat neural progenitor cells reveals human uniqueness. Toxicol Appl Pharmacol 354:40–55. https://doi.org/10.1016/j.taap.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  97. Barnabe-Heider F, Wasylnka JA, Fernandes KJ, Porsche C, Sendtner M, Kaplan DR, Miller FD (2005) Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48(2):253–265. https://doi.org/10.1016/j.neuron.2005.08.037

    Article  CAS  PubMed  Google Scholar 

  98. Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K, Taga T (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284(5413):479–482

    CAS  PubMed  Google Scholar 

  99. Gomes FC, Garcia-Abreu J, Galou M, Paulin D, Moura Neto V (1999) Neurons induce GFAP gene promoter of cultured astrocytes from transgenic mice. Glia 26(2):97–108

    CAS  PubMed  Google Scholar 

  100. Garcia-Marques J, Lopez-Mascaraque L (2013) Clonal identity determines astrocyte cortical heterogeneity. Cereb Cortex 23(6):1463–1472. https://doi.org/10.1093/cercor/bhs134

    Article  PubMed  Google Scholar 

  101. Grove EA, Williams BP, Li DQ, Hajihosseini M, Friedrich A, Price J (1993) Multiple restricted lineages in the embryonic rat cerebral cortex. Development 117(2):553–561

    CAS  PubMed  Google Scholar 

  102. Luskin MB, McDermott K (1994) Divergent lineages for oligodendrocytes and astrocytes originating in the neonatal forebrain subventricular zone. Glia 11(3):211–226. https://doi.org/10.1002/glia.440110302

    Article  CAS  PubMed  Google Scholar 

  103. Parnavelas JG (1999) Glial cell lineages in the rat cerebral cortex. Exp Neurol 156(2):418–429. https://doi.org/10.1006/exnr.1999.7044

    Article  CAS  PubMed  Google Scholar 

  104. Buosi AS, Matias I, Araujo AP, Batista C, Gomes FC (2017) Heterogeneity in synaptogenic profile of astrocytes from different brain regions. Mol Neurobiol 55:751–762. https://doi.org/10.1007/s12035-016-0343-z

    Article  CAS  PubMed  Google Scholar 

  105. Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468(7321):214–222. https://doi.org/10.1038/nature09611

    Article  CAS  PubMed  Google Scholar 

  106. Kim JH, Kim JH, Park JA, Lee SW, Kim WJ, Yu YS, Kim KW (2006) Blood-neural barrier: intercellular communication at glio-vascular interface. J Biochem Mol Biol 39(4):339–345

    CAS  PubMed  Google Scholar 

  107. Liebner S, Czupalla CJ, Wolburg H (2011) Current concepts of blood-brain barrier development. Int J Dev Biol 55(4–5):467–476. https://doi.org/10.1387/ijdb.103224sl

    Article  CAS  PubMed  Google Scholar 

  108. Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19(12):1584–1596. https://doi.org/10.1038/nm.3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53. https://doi.org/10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  110. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410. https://doi.org/10.1038/nrc1093

    Article  CAS  PubMed  Google Scholar 

  111. Gerhardt H, Ruhrberg C, Abramsson A, Fujisawa H, Shima D, Betsholtz C (2004) Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev Dyn 231(3):503–509. https://doi.org/10.1002/dvdy.20148

    Article  CAS  PubMed  Google Scholar 

  112. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177. https://doi.org/10.1083/jcb.200302047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. James JM, Gewolb C, Bautch VL (2009) Neurovascular development uses VEGF-A signaling to regulate blood vessel ingression into the neural tube. Development 136(5):833–841. https://doi.org/10.1242/dev.028845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8(1):21–43

    CAS  PubMed  Google Scholar 

  115. Ferrari G, Cook BD, Terushkin V, Pintucci G, Mignatti P (2009) Transforming growth factor-beta 1 (TGF-beta1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis. J Cell Physiol 219(2):449–458. https://doi.org/10.1002/jcp.21706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nguyen HL, Lee YJ, Shin J, Lee E, Park SO, McCarty JH, Oh SP (2011) TGF-beta signaling in endothelial cells, but not neuroepithelial cells, is essential for cerebral vascular development. Lab Investig 91(11):1554–1563. https://doi.org/10.1038/labinvest.2011.124

    Article  CAS  PubMed  Google Scholar 

  117. Larsson J, Goumans MJ, Sjostrand LJ, van Rooijen MA, Ward D, Leveen P, Xu X, ten Dijke P et al (2001) Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J 20(7):1663–1673. https://doi.org/10.1093/emboj/20.7.1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Anderson KD, Pan L, Yang XM, Hughes VC, Walls JR, Dominguez MG, Simmons MV, Burfeind P et al (2011) Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. Proc Natl Acad Sci U S A 108(7):2807–2812. https://doi.org/10.1073/pnas.1019761108

    Article  PubMed  PubMed Central  Google Scholar 

  119. Nakagawa T, Li JH, Garcia G, Mu W, Piek E, Bottinger EP, Chen Y, Zhu HJ et al (2004) TGF-beta induces proangiogenic and antiangiogenic factors via parallel but distinct Smad pathways. Kidney Int 66(2):605–613. https://doi.org/10.1111/j.1523-1755.2004.00780.x

    Article  CAS  PubMed  Google Scholar 

  120. Goumans MJ, Lebrin F, Valdimarsdottir G (2003) Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc Med 13(7):301–307

    CAS  PubMed  Google Scholar 

  121. Stefansson S, Lawrence DA (1996) The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta 3 binding to vitronectin. Nature 383(6599):441–443. https://doi.org/10.1038/383441a0

    Article  CAS  PubMed  Google Scholar 

  122. Stefansson S, Petitclerc E, Wong MK, McMahon GA, Brooks PC, Lawrence DA (2001) Inhibition of angiogenesis in vivo by plasminogen activator inhibitor-1. J Biol Chem 276(11):8135–8141. https://doi.org/10.1074/jbc.M007609200

    Article  CAS  PubMed  Google Scholar 

  123. Wu J, Strawn TL, Luo M, Wang L, Li R, Ren M, Xia J, Zhang Z et al (2015) Plasminogen activator inhibitor-1 inhibits angiogenic signaling by uncoupling vascular endothelial growth factor receptor-2-alphaVbeta3 integrin cross talk. Arterioscler Thromb Vasc Biol 35(1):111–120. https://doi.org/10.1161/ATVBAHA.114.304554

    Article  CAS  PubMed  Google Scholar 

  124. Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21(7):1743–1753. https://doi.org/10.1093/emboj/21.7.1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109(5):1953–1961. https://doi.org/10.1182/blood-2006-07-034124

    Article  CAS  PubMed  Google Scholar 

  126. Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, Lowik CW, ten Dijke P (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120(Pt 6):964–972. https://doi.org/10.1242/jcs.002949

    Article  CAS  PubMed  Google Scholar 

  127. Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M et al (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13(2):189–195. https://doi.org/10.1038/ng0696-189

    Article  CAS  PubMed  Google Scholar 

  128. Goumans MJ, Liu Z, ten Dijke P (2009) TGF-beta signaling in vascular biology and dysfunction. Cell Res 19(1):116–127. https://doi.org/10.1038/cr.2008.326

    Article  CAS  PubMed  Google Scholar 

  129. Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM et al (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23(20):4018–4028. https://doi.org/10.1038/sj.emboj.7600386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cheifetz S, Bellon T, Cales C, Vera S, Bernabeu C, Massague J, Letarte M (1992) Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267(27):19027–19030

    CAS  PubMed  Google Scholar 

  131. McCarty JH, Lacy-Hulbert A, Charest A, Bronson RT, Crowley D, Housman D, Savill J, Roes J et al (2005) Selective ablation of alphav integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development 132(1):165–176. https://doi.org/10.1242/dev.01551

    Article  CAS  PubMed  Google Scholar 

  132. Proctor JM, Zang K, Wang D, Wang R, Reichardt LF (2005) Vascular development of the brain requires beta8 integrin expression in the neuroepithelium. J Neurosci 25(43):9940–9948. https://doi.org/10.1523/JNEUROSCI.3467-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25. https://doi.org/10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  134. Merwin JR, Anderson JM, Kocher O, Van Itallie CM, Madri JA (1990) Transforming growth factor beta 1 modulates extracellular matrix organization and cell-cell junctional complex formation during in vitro angiogenesis. J Cell Physiol 142(1):117–128. https://doi.org/10.1002/jcp.1041420115

    Article  CAS  PubMed  Google Scholar 

  135. Dohgu S, Yamauchi A, Takata F, Naito M, Tsuruo T, Higuchi S, Sawada Y, Kataoka Y (2004) Transforming growth factor-beta1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells. Cell Mol Neurobiol 24(3):491–497

    CAS  PubMed  Google Scholar 

  136. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468(7323):562–566. https://doi.org/10.1038/nature09513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14(11):1398–1405. https://doi.org/10.1038/nn.2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O'Farrell FM, Buchan AM et al (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508(7494):55–60. https://doi.org/10.1038/nature13165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J et al (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561. https://doi.org/10.1038/nature09522

    Article  CAS  PubMed  Google Scholar 

  140. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245

    CAS  PubMed  Google Scholar 

  141. Li F, Lan Y, Wang Y, Wang J, Yang G, Meng F, Han H, Meng A et al (2011) Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev Cell 20(3):291–302. https://doi.org/10.1016/j.devcel.2011.01.011

    Article  CAS  PubMed  Google Scholar 

  142. Van Geest RJ, Klaassen I, Vogels IM, Van Noorden CJ, Schlingemann RO (2010) Differential TGF-{beta} signaling in retinal vascular cells: a role in diabetic retinopathy? Invest Ophthalmol Vis Sci 51(4):1857–1865. https://doi.org/10.1167/iovs.09-4181

    Article  PubMed  Google Scholar 

  143. Garcia CM, Darland DC, Massingham LJ, D'Amore PA (2004) Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Brain Res Dev Brain Res 152(1):25–38. https://doi.org/10.1016/j.devbrainres.2004.05.008

    Article  CAS  PubMed  Google Scholar 

  144. Cambier S, Gline S, Mu D, Collins R, Araya J, Dolganov G, Einheber S, Boudreau N et al (2005) Integrin alpha(v)beta8-mediated activation of transforming growth factor-beta by perivascular astrocytes: an angiogenic control switch. Am J Pathol 166(6):1883–1894

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Charles AC, Dirksen ER, Merrill JE, Sanderson MJ (1993) Mechanisms of intercellular calcium signaling in glial cells studied with dantrolene and thapsigargin. Glia 7(2):134–145. https://doi.org/10.1002/glia.440070203

    Article  CAS  PubMed  Google Scholar 

  146. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247(4941):470–473

    CAS  PubMed  Google Scholar 

  147. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215

    CAS  PubMed  Google Scholar 

  148. Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263(5154):1768–1771

    CAS  PubMed  Google Scholar 

  149. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369(6483):744–747. https://doi.org/10.1038/369744a0

    Article  CAS  PubMed  Google Scholar 

  150. Pfrieger FW, Barres BA (1997) Synaptic efficacy enhanced by glial cells in vitro. Science 277(5332):1684–1687

    CAS  PubMed  Google Scholar 

  151. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291(5504):657–661. https://doi.org/10.1126/science.291.5504.657

    Article  CAS  PubMed  Google Scholar 

  152. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14(5):311–321. https://doi.org/10.1038/nrn3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gomez-Casati ME, Murtie JC, Rio C, Stankovic K, Liberman MC, Corfas G (2010) Nonneuronal cells regulate synapse formation in the vestibular sensory epithelium via erbB-dependent BDNF expression. Proc Natl Acad Sci U S A 107(39):17005–17010. https://doi.org/10.1073/pnas.1008938107

    Article  PubMed  PubMed Central  Google Scholar 

  154. Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, Barres BA (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486(7403):410–414. https://doi.org/10.1038/nature11059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kucukdereli H, Allen NJ, Lee AT, Feng A, Ozlu MI, Conatser LM, Chakraborty C, Workman G et al (2011) Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc Natl Acad Sci U S A 108(32):E440–E449. https://doi.org/10.1073/pnas.1104977108

    Article  PubMed  PubMed Central  Google Scholar 

  156. Araujo AP, Diniz LP, Eller CM, de Matos BG, Martinez R, Gomes FC (2016) Effects of transforming growth factor beta 1 in cerebellar development: role in synapse formation. Front Cell Neurosci 10:104. https://doi.org/10.3389/fncel.2016.00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chin J, Angers A, Cleary LJ, Eskin A, Byrne JH (1999) TGF-beta1 in Aplysia: role in long-term changes in the excitability of sensory neurons and distribution of TbetaR-II-like immunoreactivity. Learn Mem 6(3):317–330

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Chin J, Liu RY, Cleary LJ, Eskin A, Byrne JH (2006) TGF-beta1-induced long-term changes in neuronal excitability in aplysia sensory neurons depend on MAPK. J Neurophysiol 95(5):3286–3290. https://doi.org/10.1152/jn.00770.2005

    Article  CAS  PubMed  Google Scholar 

  159. Rawson JM, Lee M, Kennedy EL, Selleck SB (2003) Drosophila neuromuscular synapse assembly and function require the TGF-beta type I receptor saxophone and the transcription factor mad. J Neurobiol 55(2):134–150. https://doi.org/10.1002/neu.10189

    Article  CAS  PubMed  Google Scholar 

  160. Dudu V, Bittig T, Entchev E, Kicheva A, Julicher F, Gonzalez-Gaitan M (2006) Postsynaptic mad signaling at the Drosophila neuromuscular junction. Curr Biol 16(7):625–635. https://doi.org/10.1016/j.cub.2006.02.061

    Article  CAS  PubMed  Google Scholar 

  161. Lee SH, Kim YJ, Choi SY (2016) BMP signaling modulates the probability of neurotransmitter release and readily releasable pools in Drosophila neuromuscular junction synapses. Biochem Biophys Res Commun 479(3):440–446. https://doi.org/10.1016/j.bbrc.2016.09.072

    Article  CAS  PubMed  Google Scholar 

  162. Kim MJ, O'Connor MB (2014) Anterograde Activin signaling regulates postsynaptic membrane potential and GluRIIA/B abundance at the Drosophila neuromuscular junction. PLoS One 9(9):e107443. https://doi.org/10.1371/journal.pone.0107443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sulkowski M, Kim YJ, Serpe M (2014) Postsynaptic glutamate receptors regulate local BMP signaling at the Drosophila neuromuscular junction. Development 141(2):436–447. https://doi.org/10.1242/dev.097758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Caraci F, Gulisano W, Guida CA, Impellizzeri AA, Drago F, Puzzo D, Palmeri A (2015) A key role for TGF-beta1 in hippocampal synaptic plasticity and memory. Sci Rep 5:11252. https://doi.org/10.1038/srep11252

    Article  PubMed  PubMed Central  Google Scholar 

  165. Depino AM, Lucchina L, Pitossi F (2011) Early and adult hippocampal TGF-beta1 overexpression have opposite effects on behavior. Brain Behav Immun 25(8):1582–1591. https://doi.org/10.1016/j.bbi.2011.05.007

    Article  CAS  PubMed  Google Scholar 

  166. Mathieu P, Piantanida AP, Pitossi F (2010) Chronic expression of transforming growth factor-beta enhances adult neurogenesis. Neuroimmunomodulation 17(3):200–201. https://doi.org/10.1159/000258723

    Article  CAS  PubMed  Google Scholar 

  167. Graciarena M, Depino AM, Pitossi FJ (2010) Prenatal inflammation impairs adult neurogenesis and memory related behavior through persistent hippocampal TGFbeta1 downregulation. Brain Behav Immun 24(8):1301–1309. https://doi.org/10.1016/j.bbi.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  168. Lacmann A, Hess D, Gohla G, Roussa E, Krieglstein K (2007) Activity-dependent release of transforming growth factor-beta in a neuronal network in vitro. Neuroscience 150(3):647–657. https://doi.org/10.1016/j.neuroscience.2007.09.046

    Article  CAS  PubMed  Google Scholar 

  169. Heupel K, Sargsyan V, Plomp JJ, Rickmann M, Varoqueaux F, Zhang W, Krieglstein K (2008) Loss of transforming growth factor-beta 2 leads to impairment of central synapse function. Neural Dev 3:25. https://doi.org/10.1186/1749-8104-3-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Fukushima T, Liu RY, Byrne JH (2007) Transforming growth factor-beta2 modulates synaptic efficacy and plasticity and induces phosphorylation of CREB in hippocampal neurons. Hippocampus 17(1):5–9. https://doi.org/10.1002/hipo.20243

    Article  CAS  PubMed  Google Scholar 

  171. Fong SW, McLennan IS, McIntyre A, Reid J, Shennan KI, Bewick GS (2010) TGF-beta2 alters the characteristics of the neuromuscular junction by regulating presynaptic quantal size. Proc Natl Acad Sci U S A 107(30):13515–13519. https://doi.org/10.1073/pnas.1001695107

    Article  PubMed  PubMed Central  Google Scholar 

  172. Feng Z, Ko CP (2008) Schwann cells promote synaptogenesis at the neuromuscular junction via transforming growth factor-beta1. J Neurosci 28(39):9599–9609. https://doi.org/10.1523/JNEUROSCI.2589-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Fossat P, Turpin FR, Sacchi S, Dulong J, Shi T, Rivet JM, Sweedler JV, Pollegioni L et al (2012) Glial D-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cereb Cortex 22(3):595–606. https://doi.org/10.1093/cercor/bhr130

    Article  PubMed  Google Scholar 

  174. Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, Oppenheim H, Ardizzone C et al (2015) Albumin induces excitatory synaptogenesis through astrocytic TGF-beta/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis 78:115–125. https://doi.org/10.1016/j.nbd.2015.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Yu CY, Gui W, He HY, Wang XS, Zuo J, Huang L, Zhou N, Wang K et al (2014) Neuronal and astroglial TGFbeta-Smad3 signaling pathways differentially regulate dendrite growth and synaptogenesis. NeuroMolecular Med 16(2):457–472. https://doi.org/10.1007/s12017-014-8293-y

    Article  CAS  PubMed  Google Scholar 

  176. Bae JJ, Xiang YY, Martinez-Canabal A, Frankland PW, Yang BB, Lu WY (2011) Increased transforming growth factor-beta1 modulates glutamate receptor expression in the hippocampus. Int J Physiol Pathophysiol Pharmacol 3(1):9–20

    CAS  PubMed  Google Scholar 

  177. Cekanaviciute E, Dietrich HK, Axtell RC, Williams AM, Egusquiza R, Wai KM, Koshy AA, Buckwalter MS (2014) Astrocytic TGF-beta signaling limits inflammation and reduces neuronal damage during central nervous system toxoplasma infection. J Immunol 193(1):139–149. https://doi.org/10.4049/jimmunol.1303284

    Article  CAS  PubMed  Google Scholar 

  178. Cekanaviciute E, Fathali N, Doyle KP, Williams AM, Han J, Buckwalter MS (2014) Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia 62(8):1227–1240. https://doi.org/10.1002/glia.22675

    Article  PubMed  PubMed Central  Google Scholar 

  179. Bonansco C, Fuenzalida M (2016) Plasticity of hippocampal excitatory-inhibitory balance: missing the synaptic control in the epileptic brain. Neural Plast 2016:8607038. https://doi.org/10.1155/2016/8607038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhou YX, Zhao M, Li D, Shimazu K, Sakata K, Deng CX, Lu B (2003) Cerebellar deficits and hyperactivity in mice lacking Smad4. J Biol Chem 278(43):42313–42320. https://doi.org/10.1074/jbc.M308287200

    Article  CAS  PubMed  Google Scholar 

  181. Sun M, Gewirtz JC, Bofenkamp L, Wickham RJ, Ge H, O'Connor MB (2010) Canonical TGF-beta signaling is required for the balance of excitatory/inhibitory transmission within the hippocampus and prepulse inhibition of acoustic startle. J Neurosci 30(17):6025–6035. https://doi.org/10.1523/JNEUROSCI.0789-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Luo SX, Timbang L, Kim JI, Shang Y, Sandoval K, Tang AA, Whistler JL, Ding JB et al (2016) TGF-beta signaling in dopaminergic neurons regulates dendritic growth, excitatory-inhibitory synaptic balance, and reversal learning. Cell Rep 17(12):3233–3245. https://doi.org/10.1016/j.celrep.2016.11.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lochman I, Svachova V, Milkova Pavlikova K, Medricka H, Novak V, Trilecova L, Pavliska L, Prochazka V (2018) Serum cytokine and growth factor levels in children with autism spectrum disorder. Med Sci Monit 24:2639–2646. https://doi.org/10.12659/MSM.906817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Heinemann U, Kaufer D, Friedman A (2012) Blood-brain barrier dysfunction, TGFbeta signaling, and astrocyte dysfunction in epilepsy. Glia 60(8):1251–1257. https://doi.org/10.1002/glia.22311

    Article  PubMed  PubMed Central  Google Scholar 

  185. Bahramabadi R, Fathollahi MS, Hashemi SM, Arababadi AS, Arababadi MS, Yousefi-Daredor H, Bidaki R, Khaleghinia M et al (2017) Serum levels of IL-6, IL-8, TNF-alpha, and TGF-beta in chronic HBV-infected patients: effect of depression and anxiety. Lab Med 49(1):41–46. https://doi.org/10.1093/labmed/lmx064

    Article  PubMed  Google Scholar 

  186. Cattaneo A, Cattane N, Malpighi C, Czamara D, Suarez A, Mariani N, Kajantie E, Luoni A et al (2018) FoxO1, A2M, and TGF-beta1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Mol Psychiatry. https://doi.org/10.1038/s41380-017-0002-4

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Knoferle J, Ramljak S, Koch JC, Tonges L, Asif AR, Michel U, Wouters FS, Heermann S et al (2010) TGF-beta 1 enhances neurite outgrowth via regulation of proteasome function and EFABP. Neurobiol Dis 38(3):395–404. https://doi.org/10.1016/j.nbd.2010.02.011

    Article  CAS  PubMed  Google Scholar 

  188. Nakashima H, Tsujimura K, Irie K, Ishizu M, Pan M, Kameda T, Nakashima K (2018) Canonical TGF-beta signaling negatively regulates neuronal morphogenesis through TGIF/Smad complex-mediated CRMP2 suppression. J Neurosci 38(20):4791–4810. https://doi.org/10.1523/JNEUROSCI.2423-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Xu P, Liu J, Derynck R (2012) Post-translational regulation of TGF-beta receptor and Smad signaling. FEBS Lett 586(14):1871–1884. https://doi.org/10.1016/j.febslet.2012.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Xu P, Lin X, Feng XH (2016) Posttranslational regulation of Smads. Cold Spring Harb Perspect Biol 8(12). https://doi.org/10.1101/cshperspect.a022087

    PubMed  PubMed Central  Google Scholar 

  191. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178. https://doi.org/10.1016/j.cell.2007.10.036

    Article  CAS  PubMed  Google Scholar 

  192. Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389. https://doi.org/10.1146/annurev-neuro-061010-113810

    Article  CAS  PubMed  Google Scholar 

  193. Yu W, Du Y, Zou Y, Wang X, Stephani U, Lu Y (2017) Smad anchor for receptor activation contributes to seizures in temporal lobe epilepsy. Synapse 71(3). https://doi.org/10.1002/syn.21957

    Google Scholar 

  194. Sutcigil L, Oktenli C, Musabak U, Bozkurt A, Cansever A, Uzun O, Sanisoglu SY, Yesilova Z et al (2007) Pro- and anti-inflammatory cytokine balance in major depression: effect of sertraline therapy. Clin Dev Immunol 2007:76396. https://doi.org/10.1155/2007/76396

    Article  PubMed  Google Scholar 

  195. von Bernhardi R, Cornejo F, Parada GE, Eugenin J (2015) Role of TGFbeta signaling in the pathogenesis of Alzheimer’s disease. Front Cell Neurosci 9:426. https://doi.org/10.3389/fncel.2015.00426

    Article  CAS  Google Scholar 

  196. Mogi M, Harada M, Kondo T, Narabayashi H, Riederer P, Nagatsu T (1995) Transforming growth factor-beta 1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson’s disease. Neurosci Lett 193(2):129–132

    CAS  PubMed  Google Scholar 

  197. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 12(10):585–601. https://doi.org/10.1038/nrn3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Burke SN, Barnes CA (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7(1):30–40. https://doi.org/10.1038/nrn1809

    Article  CAS  PubMed  Google Scholar 

  199. Coleman PD, Flood DG (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiol Aging 8(6):521–545

    CAS  PubMed  Google Scholar 

  200. Yeoman M, Scutt G, Faragher R (2012) Insights into CNS ageing from animal models of senescence. Nat Rev Neurosci 13(6):435–445. https://doi.org/10.1038/nrn3230

    Article  CAS  PubMed  Google Scholar 

  201. Soreq L, Rose J, Soreq E, Hardy J, Trabzuni D, Cookson MR, Smith C, Ryten M et al (2017) Major shifts in glial regional identity are a transcriptional hallmark of human brain aging. Cell Rep 18(2):557–570. https://doi.org/10.1016/j.celrep.2016.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Mostany R, Anstey JE, Crump KL, Maco B, Knott G, Portera-Cailliau C (2013) Altered synaptic dynamics during normal brain aging. J Neurosci 33(9):4094–4104. https://doi.org/10.1523/JNEUROSCI.4825-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Shi Q, Colodner KJ, Matousek SB, Merry K, Hong S, Kenison JE, Frost JL, Le KX et al (2015) Complement C3-deficient mice fail to display age-related hippocampal decline. J Neurosci 35(38):13029–13042. https://doi.org/10.1523/JNEUROSCI.1698-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Smith TD, Adams MM, Gallagher M, Morrison JH, Rapp PR (2000) Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. J Neurosci 20(17):6587–6593

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Wallace M, Frankfurt M, Arellanos A, Inagaki T, Luine V (2007) Impaired recognition memory and decreased prefrontal cortex spine density in aged female rats. Ann N Y Acad Sci 1097:54–57. https://doi.org/10.1196/annals.1379.026

    Article  PubMed  Google Scholar 

  206. Dumitriu D, Hao J, Hara Y, Kaufmann J, Janssen WG, Lou W, Rapp PR, Morrison JH (2010) Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 30(22):7507–7515. https://doi.org/10.1523/JNEUROSCI.6410-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254

    CAS  PubMed  Google Scholar 

  208. Sochocka M, Diniz BS, Leszek J (2017) Inflammatory response in the CNS: friend or foe? Mol Neurobiol 54(10):8071–8089. https://doi.org/10.1007/s12035-016-0297-1

    Article  CAS  PubMed  Google Scholar 

  209. Long JM, Kalehua AN, Muth NJ, Calhoun ME, Jucker M, Hengemihle JM, Ingram DK, Mouton PR (1998) Stereological analysis of astrocyte and microglia in aging mouse hippocampus. Neurobiol Aging 19(5):497–503

    CAS  PubMed  Google Scholar 

  210. Tremblay ME, Zettel ML, Ison JR, Allen PD, Majewska AK (2012) Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60(4):541–558. https://doi.org/10.1002/glia.22287

    Article  PubMed  PubMed Central  Google Scholar 

  211. Robillard KN, Lee KM, Chiu KB, MacLean AG (2016) Glial cell morphological and density changes through the lifespan of rhesus macaques. Brain Behav Immun 55:60–69. https://doi.org/10.1016/j.bbi.2016.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  212. Rodriguez JJ, Yeh CY, Terzieva S, Olabarria M, Kulijewicz-Nawrot M, Verkhratsky A (2014) Complex and region-specific changes in astroglial markers in the aging brain. Neurobiol Aging 35(1):15–23. https://doi.org/10.1016/j.neurobiolaging.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  213. Orre M, Kamphuis W, Osborn LM, Melief J, Kooijman L, Huitinga I, Klooster J, Bossers K et al (2014) Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol Aging 35(1):1–14. https://doi.org/10.1016/j.neurobiolaging.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  214. Salminen A, Ojala J, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H (2011) Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J Neurosci 34(1):3–11. https://doi.org/10.1111/j.1460-9568.2011.07738.x

    Article  PubMed  Google Scholar 

  215. Davies DS, Ma J, Jegathees T, Goldsbury C (2017) Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer’s disease. Brain Pathol 27(6):795–808. https://doi.org/10.1111/bpa.12456

    Article  CAS  PubMed  Google Scholar 

  216. Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K (2007) Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55(4):412–424. https://doi.org/10.1002/glia.20468

    Article  PubMed  Google Scholar 

  217. Norden DM, Fenn AM, Dugan A, Godbout JP (2014) TGFbeta produced by IL-10 redirected astrocytes attenuates microglial activation. Glia 62(6):881–895. https://doi.org/10.1002/glia.22647

    Article  PubMed  PubMed Central  Google Scholar 

  218. Norden DM, Trojanowski PJ, Walker FR, Godbout JP (2016) Insensitivity of astrocytes to interleukin 10 signaling following peripheral immune challenge results in prolonged microglial activation in the aged brain. Neurobiol Aging 44:22–41. https://doi.org/10.1016/j.neurobiolaging.2016.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Doyle KP, Cekanaviciute E, Mamer LE, Buckwalter MS (2010) TGFbeta signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. J Neuroinflammation 7(62):62. https://doi.org/10.1186/1742-2094-7-62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Tichauer JE, Flores B, Soler B, Eugenin-von Bernhardi L, Ramirez G, von Bernhardi R (2014) Age-dependent changes on TGFbeta1 Smad3 pathway modify the pattern of microglial cell activation. Brain Behav Immun 37:187–196. https://doi.org/10.1016/j.bbi.2013.12.018

    Article  CAS  PubMed  Google Scholar 

  221. Werry EL, Enjeti S, Halliday GM, Sachdev PS, Double KL (2010) Effect of age on proliferation-regulating factors in human adult neurogenic regions. J Neurochem 115(4):956–964. https://doi.org/10.1111/j.1471-4159.2010.06992.x

    Article  CAS  PubMed  Google Scholar 

  222. Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2017) Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Mol Neurobiol 54(4):2969–2985. https://doi.org/10.1007/s12035-016-9880-8

    Article  CAS  PubMed  Google Scholar 

  223. Hillen AEJ, Burbach JPH, Hol EM (2018) Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol 165-167:66–86. https://doi.org/10.1016/j.pneurobio.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  224. Garrett AM, Weiner JA (2009) Control of CNS synapse development by {gamma}-protocadherin-mediated astrocyte-neuron contact. J Neurosci 29(38):11723–11731. https://doi.org/10.1523/JNEUROSCI.2818-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344. https://doi.org/10.1056/NEJMra0909142

    Article  CAS  PubMed  Google Scholar 

  226. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185

    CAS  PubMed  Google Scholar 

  227. Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27(4):796–807. https://doi.org/10.1523/JNEUROSCI.3501-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL (2007) Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282(15):11590–11601. https://doi.org/10.1074/jbc.M607483200

    Article  CAS  PubMed  Google Scholar 

  229. De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, Bigio EH, Jerecic J et al (2008) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by a beta oligomers. Neurobiol Aging 29(9):1334–1347. https://doi.org/10.1016/j.neurobiolaging.2007.02.029

    Article  CAS  PubMed  Google Scholar 

  230. Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL et al (2002) Soluble oligomers of beta amyloid (1-42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924(2):133–140

    CAS  PubMed  Google Scholar 

  231. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95(11):6448–6453

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Rodriguez JJ, Butt AM, Gardenal E, Parpura V, Verkhratsky A (2016) Complex and differential glial responses in Alzheimer’s disease and ageing. Curr Alzheimer Res 13(4):343–358

    CAS  PubMed  Google Scholar 

  233. Olabarria M, Noristani HN, Verkhratsky A, Rodriguez JJ (2010) Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 58(7):831–838. https://doi.org/10.1002/glia.20967

    Article  PubMed  Google Scholar 

  234. Beauquis J, Pavia P, Pomilio C, Vinuesa A, Podlutskaya N, Galvan V, Saravia F (2013) Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer’s disease. Exp Neurol 239:28–37. https://doi.org/10.1016/j.expneurol.2012.09.009

    Article  CAS  PubMed  Google Scholar 

  235. Kulijewicz-Nawrot M, Verkhratsky A, Chvatal A, Sykova E, Rodriguez JJ (2012) Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer’s disease. J Anat 221(3):252–262. https://doi.org/10.1111/j.1469-7580.2012.01536.x

    Article  PubMed  PubMed Central  Google Scholar 

  236. Yeh CY, Vadhwana B, Verkhratsky A, Rodriguez JJ (2011) Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer’s disease. ASN Neuro 3(5):271–279. https://doi.org/10.1042/AN20110025

    Article  CAS  PubMed  Google Scholar 

  237. Zenaro E, Piacentino G, Constantin G (2017) The blood-brain barrier in Alzheimer’s disease. Neurobiol Dis 107:41–56. https://doi.org/10.1016/j.nbd.2016.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Merlini M, Meyer EP, Ulmann-Schuler A, Nitsch RM (2011) Vascular beta-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice. Acta Neuropathol 122(3):293–311. https://doi.org/10.1007/s00401-011-0834-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Park R, Kook SY, Park JC, Mook-Jung I (2014) Abeta1-42 reduces P-glycoprotein in the blood-brain barrier through RAGE-NF-kappaB signaling. Cell Death Dis 5:e1299. https://doi.org/10.1038/cddis.2014.258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Yang J, Lunde LK, Nuntagij P, Oguchi T, Camassa LM, Nilsson LN, Lannfelt L, Xu Y et al (2011) Loss of astrocyte polarization in the tg-ArcSwe mouse model of Alzheimer’s disease. J Alzheimers Dis 27(4):711–722. https://doi.org/10.3233/JAD-2011-110725

    Article  CAS  PubMed  Google Scholar 

  241. Orre M, Kamphuis W, Osborn LM, Jansen AH, Kooijman L, Bossers K, Hol EM (2014) Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction. Neurobiol Aging 35(12):2746–2760. https://doi.org/10.1016/j.neurobiolaging.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  242. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405. https://doi.org/10.1016/S1474-4422(15)70016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Birch AM (2014) The contribution of astrocytes to Alzheimer’s disease. Biochem Soc Trans 42(5):1316–1320. https://doi.org/10.1042/BST20140171

    Article  CAS  PubMed  Google Scholar 

  244. Estrada LD, Oliveira-Cruz L, Cabrera D (2017) Transforming growth factor beta type I role in neurodegeneration: implications for Alzheimer s disease. Curr Protein Pept Sci 19:1180–1188. https://doi.org/10.2174/1389203719666171129094937

    Article  CAS  Google Scholar 

  245. Chao CC, Hu S, Frey WH 2nd, Ala TA, Tourtellotte WW, Peterson PK (1994) Transforming growth factor beta in Alzheimer’s disease. Clin Diagn Lab Immunol 1(1):109–110

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Tarkowski E, Issa R, Sjogren M, Wallin A, Blennow K, Tarkowski A, Kumar P (2002) Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer’s disease and vascular dementia. Neurobiol Aging 23(2):237–243

    CAS  PubMed  Google Scholar 

  247. Mocali A, Cedrola S, Della Malva N, Bontempelli M, Mitidieri VA, Bavazzano A, Comolli R, Paoletti F et al (2004) Increased plasma levels of soluble CD40, together with the decrease of TGF beta 1, as possible differential markers of Alzheimer disease. Exp Gerontol 39(10):1555–1561. https://doi.org/10.1016/j.exger.2004.07.007

    Article  CAS  PubMed  Google Scholar 

  248. Flanders KC, Lippa CF, Smith TW, Pollen DA, Sporn MB (1995) Altered expression of transforming growth factor-beta in Alzheimer’s disease. Neurology 45(8):1561–1569

    CAS  PubMed  Google Scholar 

  249. Chong JR, Chai YL, Lee JH, Howlett D, Attems J, Ballard CG, Aarsland D, Francis PT et al (2017) Increased transforming growth factor beta2 in the neocortex of Alzheimer’s disease and dementia with Lewy bodies is correlated with disease severity and soluble Abeta42 load. J Alzheimers Dis 56(1):157–166. https://doi.org/10.3233/JAD-160781

    Article  CAS  PubMed  Google Scholar 

  250. Hashimoto Y, Nawa M, Chiba T, Aiso S, Nishimoto I, Matsuoka M (2006) Transforming growth factor beta2 autocrinally mediates neuronal cell death induced by amyloid-beta. J Neurosci Res 83(6):1039–1047. https://doi.org/10.1002/jnr.20804

    Article  CAS  PubMed  Google Scholar 

  251. Harris-White ME, Balverde Z, Lim GP, Kim P, Miller SA, Hammer H, Galasko D, Frautschy SA (2004) Role of LRP in TGFbeta2-mediated neuronal uptake of Abeta and effects on memory. J Neurosci Res 77(2):217–228. https://doi.org/10.1002/jnr.20149

    Article  CAS  PubMed  Google Scholar 

  252. Tapella L, Cerruti M, Biocotino I, Stevano A, Rocchio F, Canonico PL, Grilli M, Genazzani AA et al (2018) TGF-beta2 and TGF-beta3 from cultured beta-amyloid-treated or 3xTg-AD-derived astrocytes may mediate astrocyte-neuron communication. Eur J Neurosci 47(3):211–221. https://doi.org/10.1111/ejn.13819

    Article  PubMed  Google Scholar 

  253. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352(6286):712–716. https://doi.org/10.1126/science.aad8373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Afagh A, Cummings BJ, Cribbs DH, Cotman CW, Tenner AJ (1996) Localization and cell association of C1q in Alzheimer’s disease brain. Exp Neurol 138(1):22–32. https://doi.org/10.1006/exnr.1996.0043

    Article  CAS  PubMed  Google Scholar 

  255. Masuda T, Itoh J, Koide T, Tomidokoro Y, Takei Y, Ishii K, Tamaoka A (2017) Transforming growth factor-beta1 in the cerebrospinal fluid of patients with distinct neurodegenerative diseases. J Clin Neurosci 35:47–49. https://doi.org/10.1016/j.jocn.2016.09.018

    Article  CAS  PubMed  Google Scholar 

  256. Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C, Mucke L (1997) Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer’s disease. Nature 389(6651):603–606. https://doi.org/10.1038/39321

    Article  CAS  PubMed  Google Scholar 

  257. Lesne S, Docagne F, Gabriel C, Liot G, Lahiri DK, Buee L, Plawinski L, Delacourte A et al (2003) Transforming growth factor-beta 1 potentiates amyloid-beta generation in astrocytes and in transgenic mice. J Biol Chem 278(20):18408–18418. https://doi.org/10.1074/jbc.M300819200

    Article  CAS  PubMed  Google Scholar 

  258. Wyss-Coray T, Lin C, Sanan DA, Mucke L, Masliah E (2000) Chronic overproduction of transforming growth factor-beta1 by astrocytes promotes Alzheimer’s disease-like microvascular degeneration in transgenic mice. Am J Pathol 156(1):139–150

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Grammas P, Ovase R (2002) Cerebrovascular transforming growth factor-beta contributes to inflammation in the Alzheimer’s disease brain. Am J Pathol 160(5):1583–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Verghese PB, Castellano JM, Garai K, Wang Y, Jiang H, Shah A, Bu G, Frieden C et al (2013) ApoE influences amyloid-beta (Abeta) clearance despite minimal apoE/Abeta association in physiological conditions. Proc Natl Acad Sci U S A 110(19):E1807–E1816. https://doi.org/10.1073/pnas.1220484110

    Article  PubMed  PubMed Central  Google Scholar 

  261. Bien-Ly N, Gillespie AK, Walker D, Yoon SY, Huang Y (2012) Reducing human apolipoprotein E levels attenuates age-dependent Abeta accumulation in mutant human amyloid precursor protein transgenic mice. J Neurosci 32(14):4803–4811. https://doi.org/10.1523/JNEUROSCI.0033-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Zheng JY, Sun J, Ji CM, Shen L, Chen ZJ, Xie P, Sun YZ, Yu RT (2017) Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer’s disease (APP/PS1) mice by inhibiting TGF-beta/Smad2/STAT3 signaling. Neurobiol Aging 54:112–132. https://doi.org/10.1016/j.neurobiolaging.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  263. Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, Masliah E, Mucke L (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7(5):612–618. https://doi.org/10.1038/87945

    Article  CAS  PubMed  Google Scholar 

  264. Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J, Duman RS, Flavell RA (2008) Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 14(6):681–687. https://doi.org/10.1038/nm1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Krieglstein K, Strelau J, Schober A, Sullivan A, Unsicker K (2002) TGF-beta and the regulation of neuron survival and death. J Physiol Paris 96(1–2):25–30

    CAS  PubMed  Google Scholar 

  266. Meyers EA, Kessler JA (2017) TGF-beta family signaling in neural and neuronal differentiation, development, and function. Cold Spring Harb Perspect Biol 9(8). https://doi.org/10.1101/cshperspect.a022244

    PubMed  PubMed Central  Google Scholar 

  267. Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, Lin AH, Crews L et al (2006) Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 116(11):3060–3069. https://doi.org/10.1172/JCI27341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Colangelo V, Schurr J, Ball MJ, Pelaez RP, Bazan NG, Lukiw WJ (2002) Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 70(3):462–473. https://doi.org/10.1002/jnr.10351

    Article  CAS  PubMed  Google Scholar 

  269. Katsel PL, Davis KL, Haroutunian V (2005) Large-scale microarray studies of gene expression in multiple regions of the brain in schizophrenia and Alzheimer’s disease. Int Rev Neurobiol 63:41–82. https://doi.org/10.1016/S0074-7742(05)63003-6

    Article  CAS  PubMed  Google Scholar 

  270. Lee HG, Ueda M, Zhu X, Perry G, Smith MA (2006) Ectopic expression of phospho-Smad2 in Alzheimer’s disease: uncoupling of the transforming growth factor-beta pathway? J Neurosci Res 84(8):1856–1861. https://doi.org/10.1002/jnr.21072

    Article  CAS  PubMed  Google Scholar 

  271. Ueberham U, Ueberham E, Gruschka H, Arendt T (2006) Altered subcellular location of phosphorylated Smads in Alzheimer’s disease. Eur J Neurosci 24(8):2327–2334. https://doi.org/10.1111/j.1460-9568.2006.05109.x

    Article  PubMed  Google Scholar 

  272. Baig S, van Helmond Z, Love S (2009) Tau hyperphosphorylation affects Smad 2/3 translocation. Neuroscience 163(2):561–570. https://doi.org/10.1016/j.neuroscience.2009.06.045

    Article  CAS  PubMed  Google Scholar 

  273. Kim ES, Kim RS, Ren RF, Hawver DB, Flanders KC (1998) Transforming growth factor-beta inhibits apoptosis induced by beta-amyloid peptide fragment 25-35 in cultured neuronal cells. Brain Res Mol Brain Res 62(2):122–130

    CAS  PubMed  Google Scholar 

  274. Ren RF, Flanders KC (1996) Transforming growth factors-beta protect primary rat hippocampal neuronal cultures from degeneration induced by beta-amyloid peptide. Brain Res 732(1–2):16–24

    CAS  PubMed  Google Scholar 

  275. Caraci F, Tascedda F, Merlo S, Benatti C, Spampinato SF, Munafo A, Leggio GM, Nicoletti F et al (2016) Fluoxetine prevents Abeta1-42-induced toxicity via a paracrine signaling mediated by transforming-growth-factor-beta1. Front Pharmacol 7:389. https://doi.org/10.3389/fphar.2016.00389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Sortino MA, Chisari M, Merlo S, Vancheri C, Caruso M, Nicoletti F, Canonico PL, Copani A (2004) Glia mediates the neuroprotective action of estradiol on beta-amyloid-induced neuronal death. Endocrinology 145(11):5080–5086. https://doi.org/10.1210/en.2004-0973

    Article  CAS  PubMed  Google Scholar 

  277. Caraci F, Battaglia G, Busceti C, Biagioni F, Mastroiacovo F, Bosco P, Drago F, Nicoletti F et al (2008) TGF-beta 1 protects against Abeta-neurotoxicity via the phosphatidylinositol-3-kinase pathway. Neurobiol Dis 30(2):234–242. https://doi.org/10.1016/j.nbd.2008.01.007

    Article  CAS  PubMed  Google Scholar 

  278. Chen JH, Ke KF, Lu JH, Qiu YH, Peng YP (2015) Protection of TGF-beta1 against neuroinflammation and neurodegeneration in Abeta1-42-induced Alzheimer’s disease model rats. PLoS One 10(2):e0116549. https://doi.org/10.1371/journal.pone.0116549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Shen WX, Chen JH, Lu JH, Peng YP, Qiu YH (2014) TGF-beta1 protection against Abeta1-42-induced neuroinflammation and neurodegeneration in rats. Int J Mol Sci 15(12):22092–22108. https://doi.org/10.3390/ijms151222092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Murphy-Ullrich JE, Poczatek M (2000) Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev 11(1–2):59–69

    CAS  PubMed  Google Scholar 

  281. Daniel C, Wiede J, Krutzsch HC, Ribeiro SM, Roberts DD, Murphy-Ullrich JE, Hugo C (2004) Thrombospondin-1 is a major activator of TGF-beta in fibrotic renal disease in the rat in vivo. Kidney Int 65(2):459–468. https://doi.org/10.1111/j.1523-1755.2004.00395.x

    Article  CAS  PubMed  Google Scholar 

  282. Rama Rao KV, Curtis KM, Johnstone JT, Norenberg MD (2013) Amyloid-beta inhibits thrombospondin 1 release from cultured astrocytes: effects on synaptic protein expression. J Neuropathol Exp Neurol 72(8):735–744. https://doi.org/10.1097/NEN.0b013e31829bd082

    Article  CAS  PubMed  Google Scholar 

  283. Son SM, Nam DW, Cha MY, Kim KH, Byun J, Ryu H, Mook-Jung I (2015) Thrombospondin-1 prevents amyloid beta-mediated synaptic pathology in Alzheimer’s disease. Neurobiol Aging 36(12):3214–3227. https://doi.org/10.1016/j.neurobiolaging.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  284. Nichols NR, Day JR, Laping NJ, Johnson SA, Finch CE (1993) GFAP mRNA increases with age in rat and human brain. Neurobiol Aging 14(5):421–429

    CAS  PubMed  Google Scholar 

  285. Colombo JA, Gayol S, Yanez A, Marco P (1997) Immunocytochemical and electron microscope observations on astroglial interlaminar processes in the primate neocortex. J Neurosci Res 48(4):352–357

    CAS  PubMed  Google Scholar 

  286. Pitt J, Wilcox KC, Tortelli V, Diniz LP, Oliveira MS, Dobbins C, Yu XW, Nandamuri S et al (2017) Neuroprotective astrocyte-derived insulin/insulin-like growth factor 1 stimulates endocytic processing and extracellular release of neuron-bound Abeta oligomers. Mol Biol Cell 28(20):2623–2636. https://doi.org/10.1091/mbc.E17-06-0416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14(11):1225–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Phatnani H, Maniatis T (2015) Astrocytes in neurodegenerative disease. Cold Spring Harb Perspect Biol 7(6). https://doi.org/10.1101/cshperspect.a020628

    PubMed  PubMed Central  Google Scholar 

  289. Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, Xu Q, Oberheim NA et al (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12(3):342–353. https://doi.org/10.1016/j.stem.2012.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Garcia O, Torres M, Helguera P, Coskun P, Busciglio J (2010) A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down’s syndrome. PLoS One 5(12):e14200. https://doi.org/10.1371/journal.pone.0014200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Diniz LP, Tortelli V, Garcia MN, Araujo AP, Melo HM, Silva GS, Felice FG, Alves-Leon SV et al (2014) Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling. Glia 62(12):1917–1931. https://doi.org/10.1002/glia.22713

    Article  PubMed  Google Scholar 

  292. Matias I, Diniz LP, Buosi A, Neves G, Stipursky J, Gomes FCA (2017) Flavonoid hesperidin induces synapse formation and improves memory performance through the astrocytic TGF-beta1. Front Aging Neurosci 9:184. https://doi.org/10.3389/fnagi.2017.00184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Chung YC, Kim SR, Jin BK (2010) Paroxetine prevents loss of nigrostriatal dopaminergic neurons by inhibiting brain inflammation and oxidative stress in an experimental model of Parkinson’s disease. J Immunol 185(2):1230–1237. https://doi.org/10.4049/jimmunol.1000208

    Article  CAS  PubMed  Google Scholar 

  294. Ledo JH, Azevedo EP, Clarke JR, Ribeiro FC, Figueiredo CP, Foguel D, De Felice FG, Ferreira ST (2013) Amyloid-beta oligomers link depressive-like behavior and cognitive deficits in mice. Mol Psychiatry 18(10):1053–1054. https://doi.org/10.1038/mp.2012.168

    Article  CAS  PubMed  Google Scholar 

  295. Caraci F, Leggio GM, Salomone S, Drago F (2017) New drugs in psychiatry: focus on new pharmacological targets. F1000Res 6:397. https://doi.org/10.12688/f1000research.10233.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Orgeta V, Tabet N, Nilforooshan R, Howard R (2017) Efficacy of antidepressants for depression in Alzheimer’s disease: systematic review and meta-analysis. J Alzheimers Dis 58(3):725–733. https://doi.org/10.3233/JAD-161247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Departamento de Ciência e Tecnologia do Ministério da Saúde (Decit), and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). This manuscript was edited by the American Journal Experts (AJE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávia Carvalho Alcantara Gomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz, L.P., Matias, I., Siqueira, M. et al. Astrocytes and the TGF-β1 Pathway in the Healthy and Diseased Brain: a Double-Edged Sword. Mol Neurobiol 56, 4653–4679 (2019). https://doi.org/10.1007/s12035-018-1396-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1396-y

Keywords

Navigation